
STA500 Introduction to Probability and Statisctics 2, autumn 2013.

Solution exam November 18, 2013

Problem 1:

a) Let X be the compressive strenght of a randomly selected module.

P (X > 45) = 1− P (X ≤ 45) = 1− P (Z <
45− 49

3
)

= 1− P (Z < −1.33) = 1− 0.0918 = 0.9082 ≈ 0.91

P (45 < X < 50) = P (X < 50)− P (X < 45) = P (Z <
50− 49

3
)− P (Z <

45− 49
3

)

= P (Z < 0.33)− P (Z < −1.33) = 0.6293− 0.0918 = 0.5375

P (min(X1, . . . , X10) > 45) = P (X1 > 45 ∩ . . . ∩X10 > 45)
indep.

= P (X1 > 45) · · ·P (X10 > 45) = 0.908210 = 0.38

b) We have a situation where

• We check “success” or not “success” in each trial - whether the module pass the test or not.

• The probability of “success” is the same in all trials, p = P (X > 45) = 0.91.

• Independent trials - independent from module to module whether it passes the test or not.

• The trials continue until a specified number of “successes” are observed - we test modules
until we have found k = 10 modules which pass the test.

Y is then having a negative binomial distribution with k = 10 and p = 0.91.

P (Y ≥ 12) = 1− P (Y < 12) = 1− (P (Y = 10) + P (Y = 11))

= 1− ( 10− 1
10− 1 )0.9110(1− 0.91)10−10 − ( 11− 1

10− 1 )0.9110(1− 0.91)11−10

= 1− 0.39− 0.35 = 0.26

E(X) =
k

p
=

10
0.91

= 11

Problem 2:

a) The number of cars arriving during 6 minutes= 1/10 = 0.1 hour, Y , is Poisson-distributed
with expectation λt = 8 · 0.1 = 0.8.

P (Y ≥ 1) = 1− P (Y = 0) = 1− 0.80

0!
e−0.8 = 0.55

The time between consecutive events in a Poisson process is exponentially distributed with pa-
rameter λ. We let T denote the time between two consequtive cars. Then we get:

P (T < 1/6) =
∫ 1/6

0
8e−8tdt = [−e−8t]1/60 = −e−8·(1/6) − (−1) = 0.74
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If we let S2 denote the time until the second car arrive we may solve the last question by finding
P (S2 < 0.1) where S2 has a gamma distribution with parameters α = 2 and β = 1/λ = 1/8. Or,
easier, we can use the observation that:

P (S2 < 0.1) = P (Y ≥ 2) = 1− P (Y = 0)− P (Y = 1) = 1− 0.80

0!
e−0.8 − 0.81

1!
e−0.8 = 0.19

b) The value of Xn+1 is given from Xn plus the number of new cars arriving during the wash of
car n + 1 (which is independent of the past since cars arrive as a Poisson process) - i.e. we do
not need to know Xn−1, Xn−2, . . . and the process is thus Markov. The state space is {0, 1, 2, 3}
since these are the possible number of cars waiting in line.

The third row in the transition probability matrix shows the probabilities for the various number
of cars in line after the next wash when there were 2 cars waiting at the end of a wash. It is
impossible to have no cars in line after the next wash as only one car leaves the line, thus p20 = 0.
The other possibilities depend on how many new cars arrive during the next car wash. If we let,
as in point a), Y denote the number of new cars arriving during the 0.1 hour a wash take we get:

p21 = P (Y = 0) =
0.80

0!
e−0.8 = 0.45, p22 = P (Y = 1) =

0.81

1!
e−0.8 = 0.36 and

p23 = P (Y ≥ 1) = 1− P (Y = 0)− P (Y = 1) = 0.19

The number of steps we stay in state 3 has a geometric distribution (independent from step to
step if we go to a new state or not, same probability of going to a new state in each step, we
record whether we go to a new state or not and we record the number of steps until first time we
leave the state) with probability p = 0.45 of leaving the state. The expected number of steps we
stay in the state is thus 1/p = 1/0.45 = 2.2

c)
P (X2 = 2|X1 = 0) = 0.14

P (X12 = 2|X10 = 1) = 0.19

P (X5 = 3|X3 = 2, X2 = 1, X1 = 1) Markov= P (X5 = 3|X3 = 2) = 0.20

P (Xn+2 = 1, Xn+1 = 2|Xn = 3) = p32p21 = 0.45 · 0.45 = 0.203

P (X6 = 1, X5 = 2, X4 = 3|X2 = 2, X1 = 1) = P (X6 = 1, X5 = 2, X4 = 3|X2 = 2)
Markov= p2

23p32p21 = 0.20 · 0.45 · 0.45 = 0.04

d)

From


π0

π1

π2

π3

 =


0.45 0.45 0 0
0.36 0.36 0.45 0
0.14 0.14 0.36 0.45
0.05 0.05 0.19 0.55



π0

π1

π2

π3


we get π0 = 0.45π0 + 0.45π1

π1 = 0.36π0 + 0.36π1 + 0.45π2 +

π2 = 0.14π0 + 0.14π1 + 0.36π2 + 0.45π3

π3 = 0.05π0 + 0.05π1 + 0.19π2 + 0.55π3

These and π0 + π1 + π2 + π3 = 1 are the steady state equations.
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Expected number of cars waiting in steady state:

0π0 + 1π1 + 2π2 + 3π3 = 1 · 0.32 + 2 · 0.25 + 3 · 0.17 = 1.33

With three cars in line after a wash the expected number in line after the next wash is

0p30 + 1p31 + 2p32 + 3p33 = 2 · 0.45 + 3 · 0.55 = 2.55

The last expectation is clearly largest which is reasonable since it is much more likely to also have
a large number of cars in line after the next wash when there are 3 cars in line after a wash than
in the steady state situation.

With a larger value of λ (12 instead of 8) more cars will arrive to the car wash per time unit.
This implies that it is less likely to have no cars in line, and more likely to have many cars in
line. In particular π0 will decrease, π3 will increase and both the expectations will increase.

Problem 3:

a)
E(β̂1) =

1
2

E(T̄ ) +
1
2

E(S̄) =
1
2
β +

1
2
β = β

E(β̂2) =
∑n
i=1 E(Ti) +

∑m
i=1 E(Si)

n+m
=

∑n
i=1 β +

∑m
i=1 β

n+m
=
nβ +mβ

n+m
= β

I.e. both estimators are unbiased. Further, since Var(T̄ ) = V ar(T )/n = β2/n, we get (the
calculation of the expression for Var(β̂1) is just included for completeness):

Var(β̂1) = Var(
1
2
T̄ +

1
2
S̄)

indep.
= (

1
2

)2Var(T̄ ) + (
1
2

)2Var(S̄)

=
1
4
β2

n
+

1
4
β2

m
=
β2

4
(
1
n

+
1
m

) =
β2

4
(

1
41

+
1
17

) = 0.021β2

Var(β̂2) = Var(
1

n+m
[
n∑
i=1

Ti +
m∑
i=1

Si]) =
1

(n+m)2
Var[

n∑
i=1

Ti +
m∑
i=1

Si]

indep.
=

1
(n+m)2

[
n∑
i=1

Var(Ti) +
m∑
i=1

Var(Si)] =
1

(n+m)2
[nβ2 +mβ2]

=
β2

n+m
=

β2

41 + 17
= 0.017β2

Since both estimators are unbiased and Var(β̂1) > Var(β̂2), β̂2 is the best estimator.

b)
L(β) = =

n∏
i=1

1
β
e−ti/β =

1
βn
e−

∑n

i=1
ti/β

l(β) = lnL(β) = ln(1)− ln(β)n −
n∑
i=1

ti/β = −n ln(β)− 1
β

n∑
i=1

ti

∂l(β)
∂β

= −n
β

+
1
β2

n∑
i=1

ti = 0

nβ =
n∑
i=1

ti ⇒ β =
1
n

n∑
i=1

ti

I.e the MLE becomes β̂ = 1
n

∑n
i=1 Ti = T̄ .
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Next we find the second derivative of the log-likelihood at β̂:

∂l(β)
∂β

= −n
β

+
1
β2

n∑
i=1

ti

J(β) =
∂2l(β)
∂β2

=
n

β2
− 2
β3

n∑
i=1

ti

J(β̂) =
n

β̂2
− 2n
β̂3

∑n
i=1 ti
n

=
n

β̂2
− 2n
β̂2

= − n

β̂2

The Wald confidence interval then becomes:

[β̂ − zα/2
√
−1/J(β̂), β̂ + zα/2

√
−1/J(β̂)] = [β̂ − zα/2

√
β̂2/n, β̂ + zα/2

√
β̂2/n]

With the given data we get β̂ = 107/41 = 2.61. Further since zα/2 = z0.025 = 1.96 we get

[β̂− zα/2
√
β̂2/n, β̂+ zα/2

√
β̂2/n] = [2.61− 1.96

√
2.612/41, 2.61 + 1.96

√
2.612/41] = [1.81, 3.41]

The Wald confidence interval can safely be used since we have a relatively large amount of data.

c) With prior distribution given in the problem text and the likelihood in b) we get the posterior:

p(β|data) = c · L(β) · p(β) = c
1
βn
e−

∑n

i=1
ti/β 1

baΓ(a)
β−a−1e−1/(βb)

= c2β
−n−a−1e−(

∑n

i=1
ti+1/b)/β

We see that this (as a function of β) is on the same form as an inverse gamma distribu-
tion with parameters a∗ = n + a and b∗ = 1/(

∑n
i=1 ti + 1/b). I.e. the distribution is an

inverse gamma distribution with parameters n+ a and 1/(
∑n
i=1 ti + 1/b).

The standard Bayes estimate is the expectation in the posterior distribution. Using the formula
for the expectation in the inverse gamma distribution given in the text we get:

β̂Bayes =
1

b∗(a∗ − 1)
=

∑n
i=1 ti + 1/b
n+ a− 1

=
107 + 1/0.11
41 + 4− 1

= 2.64

The 95% Bayes interval is the interval

P (ξ0.975,a∗,b∗ < β < ξ0.025,a∗,b∗) = 0.95

in the posterior inverse gamme distribution. With a∗ = n+a = 41+4 = 45 and b∗ = 1/(
∑n
i=1 ti+

1/b)) = 1/(107 + 1/0.11) = 0.0086 and we get by using the result given in the text that

ξ0.975,45,0.0086 =
2

0.0086χ2
0.025,90

=
2

0.0086 · 118.136
= 1.97

ξ0.025,45,0.0086 =
2

0.0086χ2
0.975,90

=
2

0.0086 · 65.647
= 3.54

I.e. the 95% Bayes interval is (1.97, 3.54). This interval has approximately the same width as
the confidence interval, and it is shifted slightly to the right. We do not gain much precision by
adding the prior information in this case since we have quite a lot of data information.
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