
STA500 Introduction to Probability and Statisctics 2, autumn 2014.

Solution exam Desember 1, 2014

Problem 1:

a) Integrating the general Weibull density f(x) = αβxβ−1e−αxβ and inserting α = 0.25 and
β = 0.5 we get:

FX(x) = P (X ≤ x) =
∫ x

0
f(u)du =

∫ x

0
uβ−1e−αu

β
du = [−e−αuβ ]x0 = 1− e−αxβ = 1− e−0.25x0.5

P (X > 3) = 1− P (X ≤ 3) = 1− (1− e−0.25·30.5
) = e−0.25·30.5

= 0.65

The hazard rate becomes:

r(x) =
f(x)

1− F (x)
=

0.25 · 0.5x0.5−1e−0.25x0.5

e−0.25t0.5
= 0.125x−0.5

We see that the hazard rate is decreasing with time - i.e. the older the components get the less
likely they are to fail in the near future.

P (X > 5|X > 2) =
P (X > 5 ∩X > 2)

P (X > 2)
=
P (X > 5)
P (X > 2)

=
e−0.25·50.5

e−0.25·20.5 = 0.81

b) We have a situation where

• We check “success” or not “success” in each trial - whether the CPU in a robot fails within
3 years or not.

• The probability of “success” is the same in all trials, p = P (X < 3) = 1− 0.65 = 0.35.

• Independent trials - independent between robots whether CPU fails within 3 years or not.

• We have a specified number of trials - 52 robots.

Then Y has a binomial distribution with n = 52 and p = 0.35.

E(Y ) = np = 52 · 0.35 = 18.2

Var(Y ) = np(1− p) = 52 · 0.35 · 0.65 = 11.83

P (Y > 20) = 1− P (Y ≤ 20) ≈ 1− P (Z ≤ 20 + 0.5− E(Y )√
Var(Y )

)

= 1− P (Z ≤ 20 + 0.5− 18.2√
11.83

) = 1− P (Z ≤ 0.67) = 1− 0.7482 = 0.25

We can use the approximation to the normal distribution since Var(Y ) > 5. Without the correc-
tion factor +0.5 the answer becomes 0.30.
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c) FU (u) = P (U ≤ u) = P (min(X1, X2, X3) ≤ u) = 1− P (min(X1, X2, X3) > u)
indep.

= 1− P (X1 > u) · P (X2 > u) · P (X3 > u) = 1− [1− FX(u)]3

= 1− [e−0.25u0.5
]3 = 1− e−0.75u0.5

P (U > 3) = 1− P (U ≤ 3) = 1− (1− e−0.7530.5
) = e−0.7530.5

= 0.27

If we compare the cdf of U above with the general expression for the cdf of a Weibull distribution,
derived in the first problem in a), we see that FU (u) is on the form of a Weibull distribution and
with parameter values α = 0.75 and β = 0.5. (Or we can find the same by taking the derivative
of FU (u) and compare to the Weibull density.) Then using the expression for the expectation in
the Weibull distribution:

E(U) = α−1/βΓ(1 +
1
β

) = 0.75−1/0.5Γ(1 +
1

0.5
) = 0.25−2Γ(3) = 0.75−2 · 2! = 3.55

E(X) = α−1/βΓ(1 +
1
β

) = 0.25−1/0.5Γ(1 +
1

0.5
) = 0.25−2Γ(3) = 0.25−2 · 2! = 32

We see that E(U) is much lower than E(X) (a factor 9 lower). With a strongly decreasing failure
rate many units experience an early failure, but some live for a very long time and the expected
lifetime is quite high. However, with three components that could fail we will often see an early
failure in at least one of them and rarely see a long lifetime of the system, giving a low expected
time to failure for the system.

Exercise 2:
a)

P (X2 = 2|X1 = 1) = 0.12

P (X5 = 3|X4 = 2, X3 = 1, X2 = 1, X1 = 1) = P (X5 = 3|X4 = 2) = 0.05

P (X4 = 2, X3 = 1, X2 = 1|X1 = 1) = p11p11p12 = 0.83 · 0.83 · 0.12 = 0.083

P (X2 6= 2|X1 = 2) = 1− P (X2 = 2|X1 = 2) = 1− 0.85 = 0.15

b) The number of steps until we leave state 2 has a geometric distribution (independent from step
to step if we go to a new state or not, same probability of going to a new state in each step, we
record whether we go to a new state or not and we record the number of steps until first time we
leave the state) with probability p = 0.15 of leaving the state. The expected number of months
until we leave the state is thus 1/p = 1/0.15 = 6.7. The probability for staying in the state is
highest for state 0, and the expected number of months until the process go to some other state
is thus highest for state 0. The expectation is 1/0.07 = 14.3.

The Markov chain is irreducible (just one class, all states communicate), posivite recurrent (guar-
anteed to return to all states in a finite number of steps) and aperiodic (period 1) - i.e. the Markov
chain has steady state probabilities.

The P 12-matrix give probabilities for were the process is 12 steps into the future for all possible
starting points. I.e. in this specific case the matrix gives the probabilities for which state the oil
price will be in one year into the future for all possible current states.

P (Xn+12 > 2|Xn = 2) = P (Xn+12 = 3|Xn = 2) + P (Xn+12 = 4|Xn = 2) = 0.25 + 0.04 = 0.29

The interpretation of this is that if the price a month is instate 2, the probability that the price
one year later will be in a higher state is 0.29.
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c) (
π0

π1

)
=
(

0.38 0.42
0.62 0.58

)(
π0

π1

)
which gives

π0 = 0.38π0 + 0.42π1

π1 = 0.62π0 + 0.58π1

By choosing for instance the first of these equations and π0 + π1 = 1 and solving these two
equations we get π0 = 0.40 and π1 = 0.60.

The steady state probabilities give respectively the proportion of months when the price is down
and the proportion of months when the price is up in the long run. We see that the price more
often go up than down.

We can define new states holding information about the state the previous month and this month
e.g. as, 0: “down, down”, 1: “up, down”, 2: “down, up”, 3: “up, up”. Since each state holds
information about the price the two most recent months this will be a Markov chain when the
memory of the process goes two months back. The transition matrix becomes:

P =


x 0 x 0
x 0 x 0
0 x 0 x

0 x 0 x



Exercise 3:

a)

E(λ̂1) = E(
1
n

n∑
i=1

Xi

ti
) =

1
n

n∑
i=1

E(Xi)
ti

=
1
n

n∑
i=1

λti
ti

=
1
n

n∑
i=1

λ = λ

Var(λ̂1) = Var(
1
n

n∑
i=1

Xi

ti
)
indep.

=
1
n2

n∑
i=1

Var(
Xi

ti
)

=
1
n2

n∑
i=1

1
t2i

Var(Xi) =
1
n2

n∑
i=1

1
t2i
λti =

λ

n2

n∑
i=1

1
ti

Estimates:

λ̂1 =
1
5

5∑
i=1

xi
ti

=
1
5

0.043 = 0.0086, λ̂2 =
∑5
i=1 xi∑5
i=1 ti

=
8

900
= 0.0089

Since both estimators are unbiased, we prefer the estimator with lowest variance. From the
expression above we get:

Var(λ̂1) =
λ

52

5∑
i=1

1
ti

=
λ

25
· 0.041 = 0.00164 · λ

Var(λ̂2) =
λ∑5
i=1 ti

=
λ

900
= 0.0011 · λ

i.e. we see that λ̂2 has lowest variance and we will thus prefer λ̂2.
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b) L(λ) =
n∏
i=1

f(xi;λ) =
n∏
i=1

(λti)xi

xi!
e−λti =

∏n
i=1(λti)xi∏n
i=1 xi!

e−λ
∑n

i=1
ti =

λ
∑n

i=1
xi
∏n
i=1 t

xi
i∏n

i=1 xi!
e−λ

∑n

i=1
ti

ln(L(λ)) =
n∑
i=1

xi ln(λ) + ln(
n∏
i=1

txii )− ln(
n∏
i=1

xi!)− λ
n∑
i=1

ti

∂ lnL(λ)
∂λ

=
∑n
i=1 xi
λ

−
n∑
i=1

ti =
1
λ

n∑
i=1

xi −
n∑
i=1

ti = 0 ⇒ λ̂ =
∑n
i=1Xi∑n
i=1 ti

= λ̂2

To find the Wald confidence interval we start by finding the second derivative of the log-likelihood
at λ̂:

J(λ) =
∂2 lnL(λ)

∂λ2
= − 1

λ2

n∑
i=1

xi

J(λ̂) = − 1
λ̂2

n∑
i=1

Xi = −
∑n
i=1Xi(∑n

i=1
xi∑n

i=1
ti

)2 =
1∑n

i=1
xi

(
∑n

i=1
ti)2

= −
∑n
i=1 ti

λ̂

The Wald confidence interval then becomes:

[λ̂− zα/2
√
−1/J(λ̂), λ̂+ zα/2

√
−1/J(λ̂)] = [λ̂− zα/2

√√√√λ̂/ n∑
i=1

ti, λ̂+ zα/2

√√√√λ̂/ n∑
i=1

ti]

With
∑12
i=1Xi = 25 and

∑12
i=1 ti = 3200 we get λ̂ = 25/3200 = 0.0078. Also zα/2 = z0.05 = 1.645

and we get the interval:

[0.0078− 1.645
√

0.0078/3200, 0.0078 + 1.645
√

0.0078/3200] = [0.005, 0.010]

The estimator λ̂ =
∑n
i=1Xi/

∑n
i=1 ti is approximately normally distribution when

∑n
i=1Xi is

approximately normally distributed.
∑n
i=1Xi is Poisson-distributed with expectation λ

∑n
i=1 ti

and is thus well approximated with a normal distribution when λ
∑n
i=1 ti = λ · 3200 > 15. This

holds for all values of λ in the confidence interval and we thus conclude that we can thrust the
interval.

c) With the likelihood from b) and the gamma prior distribution we get the posterior distribution:

p(λ|x1, . . . , xn) = c · L(λ) · p(λ) = c · λ
∑n

i=1
xi
∏n
i=1 t

xi
i∏n

i=1 xi!
e−λ

∑n

i=1
ti 1
baΓ(a)

λa−1e−λ/b

= c2 · λ
∑n

i=1
xi+a−1e−λ(

∑n

i=1
ti+1/b)

Comparing with the gamma density we see that this posterior distribution is a gamma distribution
with parameters

∑n
i=1 xi + a and 1/(

∑n
i=1 ti + 1/b). The Bayes estimate is then the expectation

of this gamma distribution which is the product of the two parameters:

λ̂Bayes =
∑n
i=1 xi + a∑n
i=1 ti + 1/b

To calculate the estimate numerically we first we have to find the values of a and b. From the
information in the text we have that the expectation in the prior distribution is ab = 0.01 and
variance ab2 = 0.00001. Inserting the first in the latter we get 0.01b = 0.00001 which implies
b = 0.001 and thus a = 10. Using this and the data information given before point b) we get:

λ̂Bayes =
25 + 10

3200 + 1/0.001
= 0.0083

The maximum likelihood estimate is 0.0078 and the prior expectation is 0.01. The Bayes estimate
0.0083 is much closer to the data estimate than the prior estimate, i.e. the data information is
given much more weight than the prior information.
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