
EXAM IN: STA500 INTRODUCTION TO PROBABILITY AND STATISTICS 2

DURATION: 4 HOURS DATE: DECEMBER 5, 2015

PERMITTED AIDS: Approved simple calculator (HP30S, Casio FX82, TI-30,

Citizen SR-270X, Texas BA II Plus or HP17bII+ ).

THE EXAM CONSISTS OF 3 PROBLEMS ON 2 PAGES, 9 PAGES OF ENCLO-

SURES.

COURSE RESPONSIBLE: Tore Selland Kleppe PHONE: 51 83 17 17

Problem 1: A marine researcher wishes to determine the distribution of the length
of a particular species of fish in the North Sea. It is assumed that the distribution of
the length of a fish X is exponential with mean β, i.e.

f(x; β) =
1

β
exp

(

−x

β

)

.

The researcher receives n such fish from a commercial trawler. The equipment of the
trawler is made so that only fish with length greater than c > 0 gets caught by the
trawl.

a) Show that the distribution of the length Y of a fish provided to the researcher
from the trawler will have the density

f(y; β) =
1

β
exp

(

−y − c

β

)

, y > c.

b) Show that E(Y ) = β + c and V ar(Y ) = β2.

To estimate the population mean parameter β, the researcher first consider using the
estimator

β̃ =
1

n

n∑

i=1

Yi

where Yi, i = 1, . . . , n are independent lengths of fish received from the trawler.

c) Find the mean and variance of β̃.
Is β̃ an unbiased estimator for β?
Is β̃ a consistent estimator for β?

d) Based on the above expression for f(y; β), find the maximum likelihood estimator
β̂ for β.

e) Show that the maximum likelihood estimator β̂ is consistent.
Find a 95% Wald confidence interval for β based on the maximum likelihood
estimator in d).
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Problem 2: Consider the Markov chain model {Xt, t = 0, 1, . . . } with state space
S = [0, 1] and transition probability matrix

P =

[
(1− λ) λ

λ (1− λ)

]

, 0 < λ < 1.

a) State the requirements for this Markov chain to have steady state probabilities.
Show that the steady state probabilities are π0 = π1 = 1/2.
Draw a transition graph for the Markov chain.

The quantity

ρ =
E [(Xt − E(Xt))(Xt+1 − E(Xt+1))]

V ar(Xt)

is known as the first order autocorrelation of the Markov chain Xt. I.e. it is the
correlation between Xt and Xt+1. Moreover, the joint probability mass function of
(Xt, Xt+1) is given as

P (Xt = i,Xt+1 = j) = πipij, i, j = 0, 1.

b) Find E(Xt) and E(Xt+1).
Find V ar(Xt).
Compute the first order autocorrelation ρ for the process Xt.
Give an interpretation of how the parameter λ influences the behavior of the
chain.

Problem 3: To model the life time X of a particular electronic component, an en-
gineer uses a log-normal distribution with precision parameter τ . This distribution
has probability density function given by

f(x; τ) =

√
τ

2π

1

x
exp

(

−1

2
τ(log x)2

)

, x, τ > 0.

The engineer takes a Bayesian approach and uses a gamma(α, β) prior. Suppose the
engineer has access to life time data X1, . . . , Xn ∼ iid f(x; τ).

a) Show that the posterior distribution for τ , i.e. p(τ |X1, . . . , Xn), is a
gamma(α∗, β∗) distribution with shape and scale parameters

α∗ = n/2 + α, β∗ =

(

1

2

n∑

i=1

(logXi)
2 +

1

β

)
−1

.

The engineer has n = 4 observations: 1.1, 2.0, 0.4, 0.3 and the prior parameters are
selected to be α = 10 and β = 0.1.

b) Based on the prior and data, find the Bayes estimator τ̂Bayes = E(τ |X1, . . . , Xn).
Based on the prior and data, find a 95% credible interval for τ .
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Solutions

1.a
The researcher receives censored samples Y from the population X with distribution
of Y being that of X|X > c. Now

f(y) =
fX(y)

P (X > c)
=

1

β
exp

(

− y
β

)

1− F (c)
=

1

β
exp

(

− y
β

)

exp
(

− c
β

) =
1

λ
exp

(

−y − c

β

)

.

1.b
Use e.g. integral formulas in tables and formulas

E(Y ) =

∫
∞

c

yf(y)dy = c+ β.

Moreover

E(Y 2) =

∫
∞

c

y2f(y)dy = 2β2 + 2cβ + c2,

and therefore

V ar(Y ) = E(Y 2)− E(Y )2 = 2β2 + 2cβ + c2 − c2 − 2βc− β2 = β2.

1.c
Based on 1.b we have that

E(β̃) =
1

n

∑

i

E(Yi) =
1

n
n(c+ β) = c+ β.

V ar(β̃) =
1

n2

∑

i

V ar(Yi) =
1

n2
nβ2 =

β2

n
.

Note that E(β̃) = c+β 6= β and therefore the estimator is biased (i.e. not unbiased).
Moreover, the bias does not vanish as n grow, and therefore the estimator is not
consistent.
1.d
Likelihood function

L(β) =
n∏

i=1

f(yi; β) = β−n exp

(

− 1

β

∑

i

(yi − c)

)

,

log-likelihood function

l(β) = −n log(β)− 1

β

∑

i

(yi − c),

First derivative wrt β:

∂

∂β
l(β) = −n

β
+

1

β2

∑

i

(yi − c)
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Solve for critical point:

0 = −n

β
+

1

β2

∑

i

(yi − c)

⇓
nβ =

∑

i

(yi − c)

⇓
β̂ =

1

n

∑

i

(yi − c) = ȳ − c

Check that this is a maximizer:

∂2

∂β2
l(β̂) =

n

β̂2
−

2

nβ̂
︷ ︸︸ ︷
∑

i

(yi − c)

β̂3
= − n

β̂2
< 0.

I.e. β̂ correspond to a maximum of the log-likelihood function.
1.e
The estimator is consistent as it is unbiased

E(β̂) = E(ȳ)
︸︷︷︸

=β+c

−c = β

and the variance vanishes as n → ∞:

V ar(β̂) = V ar(ȳ) = β2/n → 0.

Wald-type 95% confidence interval (found second derivative above):
[

β̂ ∓ 1.96
β̂√
n

]

.

2.a
The finite state space chain is irreducible (the two states communicate) and aperiodic
(as e.g. p00 > 0), and therefore admit steady state probabilities. These are found by
solving e.g.

π0 = (1− λ)π0 + λπ1,

1 = π0 + π1.

⇓
π0 = (1− λ)π0 + λ(1− π0)

⇓
2λπ0 = λ

⇓
π0 =

1

2
⇓

π1 = 1− π0 =
1

2
.
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I.e. in the long run, the chain spend equal amount of time in both states. The
transition graph is drawn below:

state 0 state 1

λ

λ

1− λ 1− λ

2.b
Expectations:

E(Xt) =
∑

i,j=0,1

iπipij =
∑

i

iπi

∑

j

pij

︸ ︷︷ ︸

=1

= 0 · 1/2 + 1 · 1/2 = 1/2.

E(Xt+1) =
∑

i,j=0,1

jπipij = π0p00 · 0 + π0p01 · 1
︸ ︷︷ ︸

i=0

+ π1p10 · 0 + π1p11 · 1
︸ ︷︷ ︸

i=1

= 1/2·λ+1/2·(1−λ) = 1/2.

Alternatively, reasoning from the fact that the steady state probabilities are the
marginals of both Xt and Xt+1 is also OK.
The variance:

V ar(Xt) = π0(0− 1/2)2 + π1(1− 1/2)2 = 1/4.

Alternatively, going the trough the joint distribution as above is also OK.
The first order autocorrelation can then be completed as

E [(Xt − E(Xt))(Xt+1 − E(Xt+1))] =
∑

i,j=0,1

(i− 1/2)(j − 1/2)πipij

= (−1/2)(−1/2)1/2(1− λ) + (−1/2)(1/2)1/2λ
︸ ︷︷ ︸

i=0

+(1/2)(−1/2)1/2λ+ (1/2)(1/2)1/2(1− λ)
︸ ︷︷ ︸

i=1

= 1/8(1− λ)− 1/8λ− 1/8λ+ 1/8(1− λ)

= 1/4− λ/2.

Therefore

ρ =
1/4− λ/2

1/4
= 1− 2λ.

The parameter λ controls the dependence structure of the chain, without altering the
steady state distribution. I.e. for small λ, i.e. λ < 1/2, Xt+1 tends to be equal to
Xt. For λ = 1/2, the process has no autocorrelation (Xt+1 is independent of Xt in
this case). For λ > 1/2 the process tends to switch state more often than it remains
in the state.
3.a
Likelihood:

L(τ) ∝ τn/2 exp

(

−1

2
τ

n∑

i=1

(logXi)
2

)

Prior:
p(τ) ∝ τα−1 exp(−τ/β)
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Posterior:

p(τ |X1, . . . , Xn) ∝ τn/2τα−1 exp

(

−1

2
τ

n∑

i=1

(logXi)
2

)

exp(−τ/β)

= τn/2+α−1 exp

(

−τ

(

1

2
τ

n∑

i=1

(logXi)
2 +

1

β

))

.

We recognize the posterior kernel to be a gamma(α∗, β∗) distribution with shape
parameter

α∗ = n/2 + α

and scale parameter

β∗ =

(

1

2

n∑

i=1

(logXi)
2 +

1

β

)
−1

.

3.b
First we compute that

∑n
i=1

(log xi)
2 = 2.778676. The mean under a gamma distri-

bution is αβ, and therefore

τ̂Bayes = α∗β∗ =
4/2 + 10

2.778676
2

+ 10
= 1.053617.

Given that τ |X1, . . . , Xn ∼ gamma(α∗, β∗), we use the relation between general
gamma distributions and χ2-distributions to arrive at

P

(

χ2

1−α/2,2α∗ <
2τ

β∗

< χ2

α/2,2α∗ |X1, . . . , Xn

)

= 1− α

⇓

P

(
β∗

2
χ2

1−α/2,2α∗ < τ <
β∗

2
χ2

α/2,2α∗ |X1, . . . , Xn

)

= 1− α

Now, in our case α∗ = 12 and therefore χ2
0.975,2·12 = 12.401, χ2

0.025,2·12 = 39.364.
Moreover β∗ = 0.08780141 and thus

τL = 0.5 · 0.08780141 · 12.401 = 0.54, τU = 0.5 · 0.08780141 · 39.364 = 1.73

where [τL, τU ] defines the sought credible interval.
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