EXAM IN: STA500 INTRODUCTION TO PROBABILITY AND STATISTICS 2
DURATION: 4 HOURS
DATE: DECEMBER 5, 2015
PERMITTED AIDS: Approved simple calculator (HP30S, Casio FX82, TI-30,
Citizen SR-270X, Texas BA II Plus or HP17bII+).
THE EXAM CONSISTS OF 3 PROBLEMS ON 2 PAGES, 9 PAGES OF ENCLOSURES.

COURSE RESPONSIBLE: Tore Selland Kleppe
PHONE: 51831717

Problem 1: A marine researcher wishes to determine the distribution of the length of a particular species of fish in the North Sea. It is assumed that the distribution of the length of a fish X is exponential with mean β, i.e.

$$
f(x ; \beta)=\frac{1}{\beta} \exp \left(-\frac{x}{\beta}\right) .
$$

The researcher receives n such fish from a commercial trawler. The equipment of the trawler is made so that only fish with length greater than $c>0$ gets caught by the trawl.
a) Show that the distribution of the length Y of a fish provided to the researcher from the trawler will have the density

$$
f(y ; \beta)=\frac{1}{\beta} \exp \left(-\frac{y-c}{\beta}\right), y>c
$$

b) Show that $E(Y)=\beta+c$ and $\operatorname{Var}(Y)=\beta^{2}$.

To estimate the population mean parameter β, the researcher first consider using the estimator

$$
\tilde{\beta}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}
$$

where $Y_{i}, i=1, \ldots, n$ are independent lengths of fish received from the trawler.
c) Find the mean and variance of $\tilde{\beta}$.

Is $\tilde{\beta}$ an unbiased estimator for β ?
Is $\tilde{\beta}$ a consistent estimator for β ?
d) Based on the above expression for $f(y ; \beta)$, find the maximum likelihood estimator $\hat{\beta}$ for β.
e) Show that the maximum likelihood estimator $\hat{\beta}$ is consistent.

Find a 95% Wald confidence interval for β based on the maximum likelihood estimator in d).

Problem 2: Consider the Markov chain model $\left\{X_{t}, t=0,1, \ldots\right\}$ with state space $\mathcal{S}=[0,1]$ and transition probability matrix

$$
P=\left[\begin{array}{cc}
(1-\lambda) & \lambda \\
\lambda & (1-\lambda)
\end{array}\right], 0<\lambda<1 .
$$

a) State the requirements for this Markov chain to have steady state probabilities.

Show that the steady state probabilities are $\pi_{0}=\pi_{1}=1 / 2$.
Draw a transition graph for the Markov chain.
The quantity

$$
\rho=\frac{E\left[\left(X_{t}-E\left(X_{t}\right)\right)\left(X_{t+1}-E\left(X_{t+1}\right)\right)\right]}{\operatorname{Var}\left(X_{t}\right)}
$$

is known as the first order autocorrelation of the Markov chain X_{t}. I.e. it is the correlation between X_{t} and X_{t+1}. Moreover, the joint probability mass function of $\left(X_{t}, X_{t+1}\right)$ is given as

$$
P\left(X_{t}=i, X_{t+1}=j\right)=\pi_{i} p_{i j}, i, j=0,1 .
$$

b) Find $E\left(X_{t}\right)$ and $E\left(X_{t+1}\right)$.

Find $\operatorname{Var}\left(X_{t}\right)$.
Compute the first order autocorrelation ρ for the process X_{t}.
Give an interpretation of how the parameter λ influences the behavior of the chain.
Problem 3: To model the life time X of a particular electronic component, an engineer uses a log-normal distribution with precision parameter τ. This distribution has probability density function given by

$$
f(x ; \tau)=\sqrt{\frac{\tau}{2 \pi}} \frac{1}{x} \exp \left(-\frac{1}{2} \tau(\log x)^{2}\right), x, \tau>0 .
$$

The engineer takes a Bayesian approach and uses a gamma (α, β) prior. Suppose the engineer has access to life time data $X_{1}, \ldots, X_{n} \sim \operatorname{iid} f(x ; \tau)$.
a) Show that the posterior distribution for τ, i.e. $p\left(\tau \mid X_{1}, \ldots, X_{n}\right)$, is a gamma $\left(\alpha^{*}, \beta^{*}\right)$ distribution with shape and scale parameters

$$
\alpha^{*}=n / 2+\alpha, \beta^{*}=\left(\frac{1}{2} \sum_{i=1}^{n}\left(\log X_{i}\right)^{2}+\frac{1}{\beta}\right)^{-1}
$$

The engineer has $n=4$ observations: 1.1, 2.0, $0.4,0.3$ and the prior parameters are selected to be $\alpha=10$ and $\beta=0.1$.
b) Based on the prior and data, find the Bayes estimator $\hat{\tau}_{\text {Bayes }}=E\left(\tau \mid X_{1}, \ldots, X_{n}\right)$. Based on the prior and data, find a 95% credible interval for τ.

Solutions

1.a

The researcher receives censored samples Y from the population X with distribution of Y being that of $X \mid X>c$. Now

$$
f(y)=\frac{f_{X}(y)}{P(X>c)}=\frac{\frac{1}{\beta} \exp \left(-\frac{y}{\beta}\right)}{1-F(c)}=\frac{\frac{1}{\beta} \exp \left(-\frac{y}{\beta}\right)}{\exp \left(-\frac{c}{\beta}\right)}=\frac{1}{\lambda} \exp \left(-\frac{y-c}{\beta}\right) .
$$

1.b

Use e.g. integral formulas in tables and formulas

$$
E(Y)=\int_{c}^{\infty} y f(y) d y=c+\beta
$$

Moreover

$$
E\left(Y^{2}\right)=\int_{c}^{\infty} y^{2} f(y) d y=2 \beta^{2}+2 c \beta+c^{2}
$$

and therefore

$$
\operatorname{Var}(Y)=E\left(Y^{2}\right)-E(Y)^{2}=2 \beta^{2}+2 c \beta+c^{2}-c^{2}-2 \beta c-\beta^{2}=\beta^{2} .
$$

1.c

Based on 1.b we have that

$$
\begin{aligned}
& E(\tilde{\beta})=\frac{1}{n} \sum_{i} E\left(Y_{i}\right)=\frac{1}{n} n(c+\beta)=c+\beta . \\
& \operatorname{Var}(\tilde{\beta})=\frac{1}{n^{2}} \sum_{i} \operatorname{Var}\left(Y_{i}\right)=\frac{1}{n^{2}} n \beta^{2}=\frac{\beta^{2}}{n} .
\end{aligned}
$$

Note that $E(\tilde{\beta})=c+\beta \neq \beta$ and therefore the estimator is biased (i.e. not unbiased). Moreover, the bias does not vanish as n grow, and therefore the estimator is not consistent.
1.d

Likelihood function

$$
L(\beta)=\prod_{i=1}^{n} f\left(y_{i} ; \beta\right)=\beta^{-n} \exp \left(-\frac{1}{\beta} \sum_{i}\left(y_{i}-c\right)\right)
$$

log-likelihood function

$$
l(\beta)=-n \log (\beta)-\frac{1}{\beta} \sum_{i}\left(y_{i}-c\right),
$$

First derivative wrt β :

$$
\frac{\partial}{\partial \beta} l(\beta)=-\frac{n}{\beta}+\frac{1}{\beta^{2}} \sum_{i}\left(y_{i}-c\right)
$$

Solve for critical point:

$$
\begin{aligned}
0 & =-\frac{n}{\beta}+\frac{1}{\beta^{2}} \sum_{i}\left(y_{i}-c\right) \\
& \Downarrow \\
n \beta & =\sum_{i}\left(y_{i}-c\right) \\
& \Downarrow \\
\hat{\beta} & =\frac{1}{n} \sum_{i}\left(y_{i}-c\right)=\bar{y}-c
\end{aligned}
$$

Check that this is a maximizer:

$$
\frac{\partial^{2}}{\partial \beta^{2}} l(\hat{\beta})=\frac{n}{\hat{\beta}^{2}}-\frac{2 \overbrace{\sum_{i}\left(y_{i}-c\right)}^{n \hat{\beta}}}{\hat{\beta}^{3}}=-\frac{n}{\hat{\beta}^{2}}<0 .
$$

I.e. $\hat{\beta}$ correspond to a maximum of the log-likelihood function.
1.e

The estimator is consistent as it is unbiased

$$
E(\hat{\beta})=\underbrace{E(\bar{y})}_{=\beta+c}-c=\beta
$$

and the variance vanishes as $n \rightarrow \infty$:

$$
\operatorname{Var}(\hat{\beta})=\operatorname{Var}(\bar{y})=\beta^{2} / n \rightarrow 0
$$

Wald-type 95% confidence interval (found second derivative above):

$$
\left[\hat{\beta} \mp 1.96 \frac{\hat{\beta}}{\sqrt{n}}\right] .
$$

2.a

The finite state space chain is irreducible (the two states communicate) and aperiodic (as e.g. $p_{00}>0$), and therefore admit steady state probabilities. These are found by solving e.g.

$$
\begin{aligned}
\pi_{0} & =(1-\lambda) \pi_{0}+\lambda \pi_{1}, \\
1 & =\pi_{0}+\pi_{1} . \\
& \Downarrow \\
\pi_{0} & =(1-\lambda) \pi_{0}+\lambda\left(1-\pi_{0}\right) \\
& \Downarrow \\
2 \lambda \pi_{0} & =\lambda \\
& \Downarrow \\
& \\
\pi_{0} & =\frac{1}{2} \\
& \Downarrow \\
\pi_{1} & = \\
& \\
& \\
& \\
&
\end{aligned}
$$

I.e. in the long run, the chain spend equal amount of time in both states. The transition graph is drawn below:

2.b

Expectations:

$$
\begin{gathered}
E\left(X_{t}\right)=\sum_{i, j=0,1} i \pi_{i} p_{i j}=\sum_{i} i \pi_{i} \underbrace{\sum_{j} p_{i j}}_{=1}=0 \cdot 1 / 2+1 \cdot 1 / 2=1 / 2 . \\
E\left(X_{t+1}\right)=\sum_{i, j=0,1} j \pi_{i} p_{i j}=\underbrace{\pi_{0} p_{00} \cdot 0+\pi_{0} p_{01} \cdot 1}_{i=0}+\underbrace{\pi_{1} p_{10} \cdot 0+\pi_{1} p_{11} \cdot 1}_{i=1}=1 / 2 \cdot \lambda+1 / 2 \cdot(1-\lambda)=1 / 2 .
\end{gathered}
$$

Alternatively, reasoning from the fact that the steady state probabilities are the marginals of both X_{t} and X_{t+1} is also OK.
The variance:

$$
\operatorname{Var}\left(X_{t}\right)=\pi_{0}(0-1 / 2)^{2}+\pi_{1}(1-1 / 2)^{2}=1 / 4
$$

Alternatively, going the trough the joint distribution as above is also OK.
The first order autocorrelation can then be completed as

$$
\begin{aligned}
E\left[\left(X_{t}-E\left(X_{t}\right)\right)\left(X_{t+1}-E\left(X_{t+1}\right)\right)\right]= & \sum_{i, j=0,1}(i-1 / 2)(j-1 / 2) \pi_{i} p_{i j} \\
= & \underbrace{(-1 / 2)(-1 / 2) 1 / 2(1-\lambda)+(-1 / 2)(1 / 2) 1 / 2 \lambda}_{i=0} \\
& +\underbrace{(1 / 2)(-1 / 2) 1 / 2 \lambda+(1 / 2)(1 / 2) 1 / 2(1-\lambda)}_{i=1} \\
= & 1 / 8(1-\lambda)-1 / 8 \lambda-1 / 8 \lambda+1 / 8(1-\lambda) \\
= & 1 / 4-\lambda / 2 .
\end{aligned}
$$

Therefore

$$
\rho=\frac{1 / 4-\lambda / 2}{1 / 4}=1-2 \lambda .
$$

The parameter λ controls the dependence structure of the chain, without altering the steady state distribution. I.e. for small λ, i.e. $\lambda<1 / 2, X_{t+1}$ tends to be equal to X_{t}. For $\lambda=1 / 2$, the process has no autocorrelation (X_{t+1} is independent of X_{t} in this case). For $\lambda>1 / 2$ the process tends to switch state more often than it remains in the state.
3.a

Likelihood:

$$
L(\tau) \propto \tau^{n / 2} \exp \left(-\frac{1}{2} \tau \sum_{i=1}^{n}\left(\log X_{i}\right)^{2}\right)
$$

Prior:

$$
p(\tau) \propto \tau^{\alpha-1} \exp (-\tau / \beta)
$$

Posterior:

$$
\begin{aligned}
p\left(\tau \mid X_{1}, \ldots, X_{n}\right) & \propto \tau^{n / 2} \tau^{\alpha-1} \exp \left(-\frac{1}{2} \tau \sum_{i=1}^{n}\left(\log X_{i}\right)^{2}\right) \exp (-\tau / \beta) \\
& =\tau^{n / 2+\alpha-1} \exp \left(-\tau\left(\frac{1}{2} \tau \sum_{i=1}^{n}\left(\log X_{i}\right)^{2}+\frac{1}{\beta}\right)\right)
\end{aligned}
$$

We recognize the posterior kernel to be a $\operatorname{gamma}\left(\alpha^{*}, \beta^{*}\right)$ distribution with shape parameter

$$
\alpha^{*}=n / 2+\alpha
$$

and scale parameter

$$
\beta^{*}=\left(\frac{1}{2} \sum_{i=1}^{n}\left(\log X_{i}\right)^{2}+\frac{1}{\beta}\right)^{-1}
$$

3.b

First we compute that $\sum_{i=1}^{n}\left(\log x_{i}\right)^{2}=2.778676$. The mean under a gamma distribution is $\alpha \beta$, and therefore

$$
\hat{\tau}_{\text {Bayes }}=\alpha^{*} \beta^{*}=\frac{4 / 2+10}{\frac{2.778676}{2}+10}=1.053617 .
$$

Given that $\tau \mid X_{1}, \ldots, X_{n} \sim \operatorname{gamma}\left(\alpha^{*}, \beta^{*}\right)$, we use the relation between general gamma distributions and χ^{2}-distributions to arrive at

$$
\begin{aligned}
P\left(\left.\chi_{1-\alpha / 2,2 \alpha^{*}}^{2}<\frac{2 \tau}{\beta^{*}}<\chi_{\alpha / 2,2 \alpha^{*}}^{2} \right\rvert\, X_{1}, \ldots, X_{n}\right) & =1-\alpha \\
& \Downarrow \\
P\left(\left.\frac{\beta^{*}}{2} \chi_{1-\alpha / 2,2 \alpha^{*}}^{2}<\tau<\frac{\beta^{*}}{2} \chi_{\alpha / 2,2 \alpha^{*}}^{2} \right\rvert\, X_{1}, \ldots, X_{n}\right) & =1-\alpha
\end{aligned}
$$

Now, in our case $\alpha^{*}=12$ and therefore $\chi_{0.975,2 \cdot 12}^{2}=12.401, \chi_{0.025,2 \cdot 12}^{2}=39.364$. Moreover $\beta^{*}=0.08780141$ and thus

$$
\tau_{L}=0.5 \cdot 0.08780141 \cdot 12.401=0.54, \tau_{U}=0.5 \cdot 0.08780141 \cdot 39.364=1.73
$$

where $\left[\tau_{L}, \tau_{U}\right]$ defines the sought credible interval.

