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THE EXAM CONSISTS OF 3 PROBLEMS ON 2 PAGES, 9 PAGES OF ENCLO-

SURES.

COURSE RESPONSIBLE: Tore Selland Kleppe PHONE: 51 83 17 17

Problem 1: A marine researcher wishes to determine the distribution of the length
of a particular species of fish in the North Sea. It is assumed that the distribution of
the length of a fish X is exponential with mean 3, i.e. |
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The researcher receives n such fish from a commercial trawler. The equipment of the¢ 3
trawler is made so that only fish with length greater than ¢ > 0 gets caught by the
trawl.

a) Show that the distribution of the length Y of a fish provided to the researcher
from the trawler will have the density

fly; B) = %GXP (—%) Y > cC

b) Show that E(Y) = 8+ c and Var(Y) = g2

To estimate the population mean parameter 3, the researcher first consider using the

estimator
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where Y;,72 = 1,...,n are independent lengths of fish received from the trawler.
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d) Based on the above expression for f(y; (), find the maximum likelihood estimator

Bfor 5.

e) Show that the maximum likelihood estimator # is consistent.
Find a 95% Wald confidence interval for 3 based on the maximum likelihood
estimator in d).



Problem 2: Consider the Markov chain model {X;, ¢ = 0,1,...} with state space
S = [0, 1] and transition probability matrix A

P= {(1 ; A (1 i /\)] ,0< A< l.ﬂ?@:}/@i)*/‘

a) State the requirements for this Markov chain to have steady state probabilities.
Show that the steady state probabilities are my = m = 1/2.
Draw a transition graph for the Markov chain.

The quantity

_ E(X: — BE(Xy))(Xiq1 — BE(Xi41))]
= Var(X;)
is known as the first order autocorrelation of the Markov chain X;. l.e. it is the

correlation between X; and X;,;. Moreover, the joint probability mass function of
(X, Xt41) is given as
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b) Find E(X;) and E(X;41).
Find Var(X,).
Compute the first order autocorrelation p for the process X;.
Give an interpretation of how the parameter A influences the behavior of the
chain.
Problem 3: To model the life time X of a particular electronic component, an en-
gineer uses a log-normal distribution with precision parameter 7. This distribution

has probability density function given by

1 | , x = exp(Y)
flz;7)=4/——exp | —=7(logz)* }, z,7 > 0. ,
p(gritoge?), o7 > S il
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The engineer takes a Bayesian approach and uses a gamma(«, ) prior. Suppose the
engineer has access to life time data Xi,..., X, ~ iid f(z; 7).

a) Show that the posterior distribution for 7, ie.  p(r|Xy,...,Xn), is a
gamma(ca*, %) distribution with shape and scale parameters

n -1
o= nzva = (§3 e 5]
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The engineer has n = 4 observations: 1.1, 2.0, 0.4, 0.3 and the prior parameters are
selected to be o = 10 and 5 = 0.1.

b) Based on the prior and data, find the Bayes estimator Tgayes = E(7|X1,. .., Xn).
Based on the prior and data, find a 95% credible interval for 7.
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Solutions @ \ & 149
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l.a 7 = Y
The researcher receives censored samples Y from the population X with distribution
of Y being that of X|X > c. Now
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Use e.g. integral formulas in tables and formulas
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Moreover
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Note that E(B) = ¢+ # 5 and therefore the estimator is biased (i.e. not unbiased).
Moreover, the bias does not vanish as n grow, and therefore the estimator is not
consistent.
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Solve for critical point:
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Check that this is a maximlzer.:-
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Le. ,5’ correspond to a maximum of the log-likelihood function.
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The finite state space chain is irreducible (the two states communicate) and %10(‘11(, NP
(as e.g. poo > 0), and therefore admit steady state probabilities. These are found by
solving e.g.
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L.e. in the long run, the chain spend equal amount of time in both states. The
transition graph is drawn below:
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Alternatively, reasoning from the fact that the steady state probabilities are the

marginals of both X; and X, is also OK.
The variance: o ba Var ( )(f ) E( (x'f: -€&( XC)>
Var(X,) = (_—1/2) +m(l—1/2)* = 1/4. J—

Alternatively, going the tmugh the joint distribution as above is also OK. :_E((X{, 3 ,% )L)

The first 01'£1icir autocorrelati(in can then be completed as
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The parameter A controls the dependence structure of the chain, Wlthout altering the
steady state distribution. I.e. for small A, i.e. A < 1/2, X;;; tends to be equal to
X;. For A = 1/2, the process has no autocorrelation (Xt+1 is independent of X; in

this case). For A > 1/2 the process tends to switch state more often than it remains
in the state. ﬁ( !‘ €)< ( i n, (wz—)
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Posterior:

p(riX1,..., X,) o 7% Vexp (-% 3 (1og xm) exp(~7/8) (/5*)—1)
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We recognize the posterior kernel to be a gamma(a*, §*) distribution w‘r]sfn shape
parameter

and scale parameter
~1
1 1
B —( D> _(log X;)* + ﬂ) -
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3.b
First we compute that Y ., (logz;)* = 2.778676. The mean under a gamma distri-
bution is af, and therefore
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Given that 7|Xi,...,X, ~ gamma(a*,5*), we use the relation between general = %R
gamma distributions and y2-distributions to arrive at 1-K

2T
P (X%—a/&%ﬂ«_‘ < E < X§/2,2a* Xl, . ,Xn) = 11—«
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g B* o
P(2X1 a/22a*<T<w*|X1"”,Xn = l—a
| Now, in our case o* = 12 and therefore x3 or5.212 = = 12401, Xo 05,212 = = 39.364.

Moreover 5* = 0. 08780141 and thus
71, = 0.5 0.08780141 - 12.401 = 0.54, 7y = 0.5-0.08780141 - 39.364 = 1.73

where [, 7i7] defines the sought credible interval.
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