

EXAM IN: STA500 INTRODUCTION TO PROBABILITY AND STATISTICS 2

DURATION: 4 HOURS

DATE: DECEMBER 5, 2015

PERMITTED AIDS: Approved simple calculator (HP30S, Casio FX82, TI-30,

Citizen SR-270X, Texas BA II Plus or HP17bII+).

THE EXAM CONSISTS OF 3 PROBLEMS ON 2 PAGES, 9 PAGES OF ENCLO-SURES.

COURSE RESPONSIBLE: Tore Selland Kleppe

PHONE: 51 83 17 17

Problem 1: A marine researcher wishes to determine the distribution of the length of a particular species of fish in the North Sea. It is assumed that the distribution of the length of a fish X is exponential with mean β , i.e.

$$f(x; \beta) = \frac{1}{\beta} \exp\left(-\frac{x}{\beta}\right).$$

The researcher receives n such fish from a commercial trawler. The equipment of the \mathcal{C} trawler is made so that only fish with length greater than c>0 gets caught by the trawl.

Show that the distribution of the length Y of a fish provided to the researcher a) from the trawler will have the density

$$f(y; \beta) = \frac{1}{\beta} \exp\left(-\frac{y-c}{\beta}\right), \ y > c.$$

b) Show that $E(Y) = \beta + c$ and $Var(Y) = \beta^2$.

To estimate the population mean parameter β , the researcher first consider using the estimator

$$\tilde{\beta} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

where Y_i , i = 1, ..., n are independent lengths of fish received from the trawler.

- Find the mean and variance of β .
 - Is $\tilde{\beta}$ an unbiased estimator for β ?

 Is $\tilde{\beta}$ a consistent estimator for β ? $\tilde{\beta} = \beta$ and $\tilde{\beta} = \beta$?
- Based on the above expression for $f(y;\beta)$, find the maximum likelihood estimator $\hat{\beta}$ for β .
- Show that the maximum likelihood estimator $\hat{\beta}$ is consistent. Find a 95% Wald confidence interval for β based on the maximum likelihood estimator in d).

<u>Problem 2:</u> Consider the Markov chain model $\{X_t, t=0,1,\ldots\}$ with state space S = [0, 1] and transition probability matrix

$$P = \begin{bmatrix} (1-\lambda) & \lambda \\ \lambda & (1-\lambda) \end{bmatrix}, \ 0 < \lambda < 1.$$

State the requirements for this Markov chain to have steady state probabilities. Show that the steady state probabilities are $\pi_0 = \pi_1 = 1/2$. Draw a transition graph for the Markov chain.

The quantity

$$\rho = \frac{E[(X_t - E(X_t))(X_{t+1} - E(X_{t+1}))]}{Var(X_t)}$$

is known as the first order autocorrelation of the Markov chain X_t . I.e. it is the correlation between X_t and X_{t+1} . Moreover, the joint probability mass function of (X_t, X_{t+1}) is given as

$$P(X_t = i, X_{t+1} = j) = \pi_i p_{ij}, \ i, j = 0, 1.$$
b) Find $E(X_t)$ and $E(X_{t+1})$.
$$Eind Var(X)$$

$$P(X_t = i, X_{t+1} = j) = \pi_i p_{ij}, \ i, j = 0, 1.$$

$$P(X_t = i, X_{t+1} = j) = \pi_i p_{ij}, \ i, j = 0, 1.$$

$$P(X_t = i, X_{t+1} = j) = \pi_i p_{ij}, \ i, j = 0, 1.$$

Find $Var(X_t)$.

Compute the first order autocorrelation ρ for the process X_t .

Give an interpretation of how the parameter λ influences the behavior of the chain.

Problem 3: To model the life time X of a particular electronic component, an engineer uses a log-normal distribution with precision parameter τ . This distribution has probability density function given by

$$f(x;\tau) = \sqrt{\frac{\tau}{2\pi}} \frac{1}{x} \exp\left(-\frac{1}{2}\tau(\log x)^2\right), \ x,\tau > 0. \qquad \begin{array}{c} \times = \exp\left(Y\right) \\ \text{Yall}(Q_t, T) \end{array}$$

The engineer takes a Bayesian approach and uses a gamma (α, β) prior. Suppose the engineer has access to life time data $X_1, \ldots, X_n \sim \text{iid } f(x; \tau)$.

Show that the posterior distribution for τ , i.e. $p(\tau|X_1,\ldots,X_n)$, is a gamma(α^*, β^*) distribution with shape and scale parameters

$$\alpha^* = n/2 + \alpha, \ \beta^* = \left(\frac{1}{2} \sum_{i=1}^n (\log X_i)^2 + \frac{1}{\beta}\right)^{-1}.$$

The engineer has n = 4 observations: 1.1, 2.0, 0.4, 0.3 and the prior parameters are selected to be $\alpha = 10$ and $\beta = 0.1$.

b) Based on the prior and data, find the Bayes estimator $\hat{\tau}_{Bayes} = E(\tau | X_1, \dots, X_n)$. Based on the prior and data, find a 95% credible interval for τ .

Solutions

1.a

The researcher receives censored samples Y from the population X with distribution of Y being that of X|X>c. Now

$$f(y) = \frac{f_X(y)}{P(X > c)} = \frac{\frac{1}{\beta} \exp\left(-\frac{y}{\beta}\right)}{1 - F_X(c)} = \frac{\frac{1}{\beta} \exp\left(-\frac{y}{\beta}\right)}{\exp\left(-\frac{c}{\beta}\right)} = \frac{1}{\beta} \exp\left(-\frac{y - c}{\beta}\right).$$

$$1 - F_X(c) = 1 - \left(1 - e \times f(-\frac{c}{\beta})\right)$$

1.b

Use e.g. integral formulas in tables and formulas

$$E(Y) = \int_{c}^{\infty} \underbrace{yf(y)dy}_{y} = \underbrace{c + \beta}_{c}.$$

Moreover

$$E(Y^{2}) = \int_{c}^{\infty} y^{2} f(y) dy = 2\beta^{2} + 2c\beta + c^{2},$$

and therefore

refore
$$Var(Y) = E(Y^2) - E(Y)^2 = 2\beta^2 + 2c\beta + c^2 - c^2 - 2\beta c - \beta^2 = \beta^2.$$

1.c

Based on 1.b we have that

The that
$$E(\beta) = E(\frac{1}{n} \sum_{i} Y_{i}) = \frac{1}{n} E(\sum_{i} Y_{i})$$

$$E(\tilde{\beta}) = \frac{1}{n} \sum_{i} E(Y_{i}) = \frac{1}{n} n(c + \beta) = \underline{c + \beta}.$$

$$Var(\tilde{\beta}) = \frac{1}{n^2} \sum_{i} Var(Y_i) = \frac{1}{n^2} n\beta^2 = \frac{\beta^2}{n}. \quad \forall ar(\tilde{\beta}) = Var(\frac{1}{n} ZY_i) = \left(\frac{1}{n}\right)^2 Var(Z_i)$$

Note that $E(\tilde{\beta}) = c + \beta \neq \beta$ and therefore the estimator is biased (i.e. not unbiased). Moreover, the bias does not vanish as n grow, and therefore the estimator is not consistent.

1.d

Likelihood function

$$\left(f_{\gamma}(y) = \frac{1}{\beta} \exp\left(-\frac{y-c}{\beta}\right), y>c\right)$$

$$L(\beta) = \prod_{i=1}^{n} f(y_i; \beta) = \beta^{-n} \exp\left(-\frac{1}{\beta} \sum_{i} (y_i - c)\right),$$

exp(a)exp(b)-

log-likelihood function

$$\log L(\beta) = l(\beta) = -n \log(\beta) - \frac{1}{\beta} \sum_{i} (y_i - c),$$

 $\log (ab) = \log(a) + \log(b)$ $\log (ab) = b \log(a)$ $\log(\exp(a)) = a$

First derivative wrt β :

$$\frac{\partial}{\partial \beta}l(\beta) = -\frac{n}{\beta} + \frac{1}{\beta^2} \sum_{i} (y_i - c)$$

Solve for critical point:

$$0 = -\frac{n}{\beta} + \frac{1}{\beta^2} \sum_{i} (y_i - c)$$

$$\downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Check that this is a maximizer:

$$\frac{\partial^2}{\partial \beta^2} l(\hat{\beta}) = \frac{n}{\hat{\beta}^2} - \frac{2 \sum_{i} (y_i - c)}{\hat{\beta}^3} = -\frac{n}{\hat{\beta}^2} < 0.$$

I.e. $\hat{\beta}$ correspond to a manner.

1.e The estimator is consistent as it is unbiased $\tilde{\beta}$ $E(\hat{\beta}) = E(\tilde{y}) - c = \beta$ $= \beta + c$ form (c)I.e. $\hat{\beta}$ correspond to a maximum of the log-likelihood function.

$$E(\hat{\beta}) = \underbrace{E(\hat{y})}_{=\beta+c} - c = \underbrace{E(\hat{y})}_{=\beta+c} - \underbrace{E(\hat{y})}$$

and the variance vanishes as $n \to \infty$:

$$\underbrace{Var(\hat{\beta})}_{\text{form}} = \underbrace{Var(\bar{y})}_{\text{form}} = \underbrace{\beta^2/n}_{\text{form}} \to 0.$$

Consistent: E(B) > BV

and

Vand B) -> OV

F (a+5Y)= a+6E(Y)

Wald-type 95% confidence interval (found second derivative above): $\sqrt{ar(a+Y)} = \sqrt{ar(Y)}$

$$\left[\hat{\beta} \mp 1.96 \frac{\hat{\beta}}{\sqrt{n}}\right]. \quad \beta \mp R_{\chi_2} \left[\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$

2.a

The finite state space chain is irreducible (the two states communicate) and aperiodic SND (as e.g. $p_{00} > 0$), and therefore admit steady state probabilities. These are found by solving e.g.

solving e.g.

This:
$$(1-\lambda)\frac{1}{2} + \lambda\frac{1}{2} = \frac{1}{2}$$

This: $\pi_0 = (1-\lambda)\pi_0 + \lambda\pi_1$,

 $\pi_0 = (1-\lambda)\pi_0 + \lambda(1-\pi_0)$
 $\pi_0 = (1-\lambda)\pi_0 + \lambda(1-\pi_0)$
 $\pi_0 = \frac{1}{2}$
 $\pi_0 = \frac{1}{2}$
 $\pi_0 = \frac{1}{2}$

$$T = P^T T$$
 $Z_1 T_1 = 1$

I.e. in the long run, the chain spend equal amount of time in both states. transition graph is drawn below:

$$\begin{array}{c|c}
\hline
\text{state 0} & \lambda \\
\hline
\lambda & \text{state 1} \\
\hline
1 - \lambda & 1 - \lambda
\end{array}$$

2.b

Expectations:

$$E(X_t) = \sum_{i,j=0,1} i \pi_i p_{ij} = \sum_i i \pi_i \sum_j p_{ij} = 0 \cdot 1/2 + 1 \cdot 1/2 = 1/2.$$

$$E(X_{t+1}) = \sum_{i,j=0,1} j \pi_i p_{ij} = \underbrace{\pi_0 p_{00} \cdot 0 + \pi_0 p_{01} \cdot 1}_{i=0} + \underbrace{\pi_1 p_{10} \cdot 0 + \pi_1 p_{11} \cdot 1}_{i=1} = 1/2 \cdot \lambda + 1/2 \cdot (1-\lambda) = 1/2.$$

Alternatively, reasoning from the fact that the steady state probabilities are the marginals of both X_t and X_{t+1} is also OK. $\text{low Var}(X_t) = E((X_t - E(X_t))^2)$ The variance:

$$Var(X_t) = \underline{\pi_0}(0 - 1/2)^2 + \underline{\pi_1}(1 - 1/2)^2 = 1/4.$$

Alternatively, going the trough the joint distribution as above is also OK. $= \mathcal{E}((x_{k} - \frac{1}{2})^{2})$ The first order autocorrelation can then be completed as

$$E[(X_{t} - E(X_{t}))(X_{t+1} - E(X_{t+1}))] = \sum_{i,j=0,1} (i - 1/2)(j - 1/2)\pi_{i}p_{ij}$$

$$E(g(X_{t}, X_{t+1})) = \underbrace{(-1/2)(-1/2)1/2(1 - \lambda) + (-1/2)(1/2)1/2\lambda}_{i=0}$$

$$= \sum_{i,j=0,1} (-1/2)(-1/2)1/2(1 - \lambda) + (-1/2)(1/2)1/2\lambda$$

$$= (-1/2)(-1/2)1/2(1 - \lambda) + (1/2)(1/2)1/2(1 - \lambda)$$

$$= (-1/2)(-1/2)1/2\lambda + (-1/2)(1/2)1/2(1 - \lambda)$$
Therefore

Therefore

$$\rho = \frac{1/4 - \lambda/2}{1/4} = 1 - 2\lambda.$$

The parameter λ controls the dependence structure of the chain, without altering the Ition. I.e. for small reprocess has no autocorrelation.

1/2 the process tends to switch state more often and fix $f(x) = \sqrt{\frac{1}{x}} \sum_{i=1}^{n} (\log X_i)^2$ $L(\tau) \propto \tau^{n/2} \exp\left(-\frac{1}{2}\tau \sum_{i=1}^{n} (\log X_i)^2\right)$ $\chi \propto \chi^{n/2} \exp\left(-\frac{1}{2}\tau \sum_{i=1}^{n} (\log X_i)^2\right)$ $\chi \propto \chi^{n/2} \exp\left(-\frac{1}{2}\tau \sum_{i=1}^{n} (\log X_i)^2\right)$ steady state distribution. I.e. for small λ , i.e. $\lambda < 1/2$, X_{t+1} tends to be equal to X_t . For $\lambda = 1/2$, the process has no autocorrelation (X_{t+1}) is independent of X_t in this case). For $\lambda > 1/2$ the process tends to switch state more often than it remains in the state.

3.a

Likelihood:

$$L(\tau) \propto \tau^{n/2} \exp\left(-\frac{1}{2}\tau \sum_{i=1}^{n} (\log X_i)^2\right)$$

Prior:

$$p(\tau) \propto \frac{\tau^{\alpha-1} \exp(-\tau/\beta)}{5}$$

 $E(X) = Z \times p(X,y)$

p(T/X1,-,(Xn) & L(T) p(T)

Posterior:

$$p(\tau|X_1,\ldots,X_n) \propto \underline{\tau^{n/2}\tau^{\alpha-1}} \exp\left(-\frac{1}{2}\tau \sum_{i=1}^n (\log X_i)^2\right) \exp(-\tau/\beta)$$

$$= \underline{\tau^{n/2+\alpha-1}} \exp\left(-\tau \left(\frac{1}{2}\sum_{i=1}^n (\log X_i)^2 + \frac{1}{\beta}\right)\right).$$

We recognize the posterior kernel to be a gamma(α^*, β^*) distribution with shape parameter

$$\alpha^* = n/2 + \alpha$$

and scale parameter

$$\beta^* = \left(\frac{1}{2} \sum_{i=1}^n (\log X_i)^2 + \frac{1}{\beta}\right)^{-1}.$$

3.b

First we compute that $\sum_{i=1}^{n} (\log x_i)^2 = 2.778676$. The mean under a gamma distribution is $\alpha\beta$, and therefore

$$\hat{\tau}_{Bayes} = \alpha^* \beta^* = \frac{4/2 + 10}{\frac{2.778676}{2} + 10} = 1.053617.$$

$$P(A < \uparrow(X_1, X_1 < B))$$

Given that $\tau|X_1,\ldots,X_n\sim \operatorname{gamma}(\alpha^*,\beta^*)$, we use the relation between general gamma distributions and χ^2 -distributions to arrive at

$$P\left(\chi_{1-\alpha/2,2\alpha^*}^2 < \frac{2\tau}{\beta^*} < \chi_{\alpha/2,2\alpha^*}^2 | X_1, \dots, X_n \right) = 1 - \alpha$$

$$\downarrow \qquad \qquad \downarrow$$

$$P\left(\frac{\beta^*}{2}\chi_{1-\alpha/2,2\alpha^*}^2 < \tau < \frac{\beta^*}{2}\chi_{\alpha/2,2\alpha^*}^2 | X_1, \dots, X_n \right) = 1 - \alpha$$

Now, in our case $\alpha^* = 12$ and therefore $\chi^2_{0.975,2\cdot 12} = 12.401$, $\chi^2_{0.025,2\cdot 12} = 39.364$. Moreover $\beta^* = 0.08780141$ and thus

$$\tau_L = 0.5 \cdot 0.08780141 \cdot 12.401 = 0.54, \ \tau_U = 0.5 \cdot 0.08780141 \cdot 39.364 = 1.73$$

where $[\tau_L, \tau_U]$ defines the sought credible interval.

$$\frac{2}{\beta^*}(\tau|x_1...x_n)) \sim \chi^2_{2\alpha^*}$$