
EXAM IN: STA500 INTRODUCTION TO PROBABILITY AND STATISTICS 2

DURATION: 4 HOURS DATE: DECEMBER 12, 2016

PERMITTED AIDS: Approved simple calculator (HP30S, Casio FX82, TI-30,

Citizen SR-270X, Texas BA II Plus or HP17bII+ ).

One yellow A4 size sheet with handwritten notes is allowed.

Both sides of the sheet can be used.

THE EXAM CONSISTS OF 6 PROBLEMS ON 4 PAGES, 9 PAGES OF ENCLO-

SURES.

COURSE RESPONSIBLE: Jörn Schulz PHONE:

Problem 1: A message of the form “yes” is transmitted from mouth to mouth. In
each transition the message “yes” is distorted into “no” with probability 0.4 and
into “yes and no” with probability 0.1. Moreover, “no” is distorted into “yes” with
probability 0.3 and into “yes and no” with probability 0.2. Finally, “yes and no” is
distorted into “yes” with probability 0.4 and into “no” with probability 0.4. This
system is described by a homogeneous Markov chain {Xn, n = 1, 2, . . .} with state
space S = {0 = “yes”, 1 = “yes and no”, 2 = “no”}.

a) Draw the transition graph of the Markov chain and write down the transition
probability matrix.
What is the period? Is this Markov chain irreducible?
What is the probability that the message is not “yes” after one transition, given
that it was “yes” before the transition?
What is P (X4 = 0|X0 = 0, X1 = 1, X2 = 1, X3 = 2)?

In the following, assume a different transition probability matrix, namely

P =





0.5 0.3 0.2
0.2 0.5 0.3
0.2 0.3 0.5



 .

b) How high is the probability that the recipient will receive the message “yes” after
two transitions?
What is the probability of P (X0 = 0 ∩X2 = 1 ∩X4 = 1)?
What are the steady state probabilities?
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Problem 2: In every day life we receive in our mailbox two kinds of emails: accept-
able emails and spam-mails. In the following, we call acceptable emails just emails.
Let us assume that we receive an email with probability p ∈ (0, 1) and that received
emails and spam-mails are independent from each other. Let Sn be the number of
spam-mails of n received messages.

a) What is the distribution of Sn? Explain your answer!
Suppose p = 0.7 and n = 10. What is the probability that we receive more than
one spam mail?
What is the expected number of spam-mails E(Sn) and the variance V ar(Sn)?

Assume again, p ∈ (0, 1). Now, let Tk be the random number of spam-mails until we
receive the k’th acceptable email.

b) What is the distribution of T2?
Suppose p = 0.7. What is the expected number of spam-mails until we receive
the 2’nd acceptable email? What is the probability of P (Tk ≥ 2)?

Problem 3: The yields on shares (avkastning av askjer) can, for example, be modeled
using the the Laplace distribution. The distribution has a parameter λ and the
following density function

f(x;λ) =
1

2λ
exp(−|x|

λ
), x ∈ R, λ > 0,

where |x| is the absolute value of x. The parameter λ can be understood as the
expected value of the absolute yields on shares |X|, i.e., E(|X|) = λ.

a) Supposed we have n independent observations xi, i = 1, . . . , n of yields of one
share. Show that the maximum likelihood estimator (MLE) of λ is given by

λ̂ =
1

n

n
∑

i=1

|xi|.

Show further that λ̂ is an unbiased estimator.
Assume we observe day’s yields of 1.3,−0.6, 0.2, 0.4,−0.8 during one week. Cal-
culate the MLE λ̂ for this sample and the Wald confidence interval.

Problem 4: Suppose we have two independent random variables Y1 and Y2 with
Y1 ∼ Poisson(αβ) and Y2 ∼ Poisson((1 − α)β). Suppose further that our prior
information for α and β can be expressed as α ∼ Beta(p, q) and β ∼ Gamma(p+q, 1)
with α and β independent, for specified hyper-parameters p and q.

a) What is the joint posterior distribution of α and β and what are the marginal
posterior distributions?
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Problem 5: A company wants to quantify their carbon steel production. Therefore
they take independent measurements of the yield point (p̊a norsk flytespenning) of
10 carbon steel samples resulting in the following values (1Megapascal = 1N/mm2):

x1 = 332, x2 = 354, x3 = 338, x4 = 340, x5 = 345

x6 = 360, x7 = 366, x8 = 352, x9 = 346, x10 = 342.

It is assumed that the yield point is normally distributed and that a significance value
of α = 0.05 is given.

a) Estimate the expected yield point µ.
What is the confidence interval (CI) in case the variance is known to be σ2 = 105?
What is the CI in case the variance is unknown?

b) Are the following two statements wrong or correct? Why?

• The true value µ is with probability 0.95 contained in the calculated CI for
known variance.

• 1
n

∑n

i=1 xi is with 95% probability in the interval calculated for known vari-
ance.

Assume it is known that the variance is σ2 ≤ 105. How large do we have to
choose the sample size in order to obtain a confidence interval with maximal
length 8N/mm2 for µ?

Problem 6: A ticket office is selling tickets for an open-air-festival in the future. The
customer arrival process can be described by Poisson-process with an average arrival
rate of one customer per minute. Moreover, the ticket office needs 45 seconds for the
ticket sale in average.

a) When you arrive one person is being served and 9 persons are waiting in line.
Two question arise to you:

• What is the expected waiting time in minutes until you get served?

• You are in hurry and have only 6 minute left in order to buy a ticket. What
is the probability that you will buy a ticket within 6min?

Draw the transition graph with the corresponding specific transition rates.
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We have shown in the lecture that the steady state probabilities for the number of
people in this queuing system can be described by (you don’t have to show this
again!)

πk = (
λ

γ
)k
(

1− λ

γ

)

, k = 0, 1, 2, 3, 4 . . . .

b) Explain briefly why we have steady state probabilities for this Markov chain.
What is the expected number of people in this queuing system?
What is the probability that more than 3 people are waiting in the line?
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Solutions

1.a
The transition graph is

“yes”

“yes and no”

“no”

and the transition matrix becomes

P =





0.5 0.1 0.4
0.4 0.2 0.4
0.3 0.2 0.5



 .

From the transition graph we see that all states communicate with each other, i.e.,
we have one class {0, 1, 2} and thus this Markov chain is irreducible. Each state has a
positive probability to return to itself in one transition, i.e., p00 > 0, p11 > 0, p22 > 0.
Therefore, the period is one, i.e., the Markov chain is aperiodic. In addition, we have
a finite state space. Thus, the Markov chain has steady state probabilities.
The probability that the message is not “yes” anymore after one transition is p01 +
p02 = 0.1 + 0.4. = 0.5 and
P (X4 = 0|X0 = 0, X1 = 1, X2 = 1, X3 = 2) = P (X4 = 0|X3 = 2) = 0.3.

1.b
Let us first calculate all two-steps transitions:

P 2 = P · P =





0.35 0.36 0.29
0.26 0.40 0.34
0.26 0.36 0.38



 .

The probability that the recipient will receive the message “yes” after two transitions
is p200 = 0.35. We have

P (X0 = 0 ∩X2 = 1 ∩X4 = 1) = P (X0 = 0)P (X2 = 1 | X0 = 0)P (X4 = 1 | X2 = 1)

= 1p201p
2
11 = 0.36 · 0.4 = 0.144.
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Finally, the steady state probability are

Π = P TΠ

⇔





π0

π1

π2



 =





0.5 0.2 0.2
0.3 0.5 0.3
0.2 0.3 0.5









π0

π1

π2





⇔ π0 = 0.5π0 + 0.2π1 + 0.2π2

π1 = 0.3π0 + 0.5π1 + 0.3π2

plus the condition π2 = 1− π0 − π1

⇔ π0 = 0.5π0 + 0.2π1 + 0.2(1− π0 − π1)

π1 = 0.3π0 + 0.5π1 + 0.3(1− π0 − π1)

⇔ 0.7π0 = 0.2 ⇔ π0 =
0.2

0.7
=

2

7

0.8π1 = 0.3 ⇔ π1 =
0.3

0.8
=

3

8

π2 = 1− 2

7
− 3

8
=

56

56
− 16

56
− 21

56
=

19

56
.

The steady state probabilities are





π0

π1

π2



 =





2
7
3
8
19
56



 ≈





0.2857
0.375
0.3393



 .

2.a
We receive n independent messages, i.e., we have n independent trails. Further, we
classify the messages into accepted-emails (“success”) or spam-mails (“no success”).
The probability is q = 1 − p for a spam-mail (i.e. “no success”) is the same in
each trial. Moreover, we receive n messages. In this situation, Sn=“the number of
spam-mails of n received messages” is binomial distributed with Sn ∼ B(n, q), i.e.,

P (Sn = k) =

(

n

k

)

qkpn−k, k = 0, . . . , n.

Moreover,

P (Sn > 1) = P (Sn ≥ 2) = 1− P (Sn = 0)− P (Sn = 1) = 1− q0p10 −
(

10

1

)

qp9

= 1− 0.710 − 10 ∗ 0.3 ∗ 0.79 ≈ 0.8507,

i.e., we have a probability of 85% that there are at least two spam mails if we re-
ceive 10 messages. Moreover, E(Sn) = nq = 10 ∗ 0.3 = 3 and V ar(Sn) = nqp =
10 ∗ 0.3 ∗ 0.7 = 2.1.
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2.b
Now, let T2 be the random number of spam-mails until we receive the 2nd acceptable-
email. Further, let X2 be the random number of messages (trials) until we receive
the 2nd acceptable-email, i.e., X2 = T2 + 2. , i.e.,

P (T2 = j) = P (Xn = j + 2)

= P (the first j + 1 messages contains exact j spam-mails

and one acceptable-email, afterwards a second acceptable-email follows)

= P (Sn = j) · P (acceptable-email)

=

(

j + 1

j

)

qjp · p = (j + 1)p2qj,

i.e. T2 is negative binomial distributed shifted by −2 compared to the form in the
collection of formulas. Therefore, the expected number of spam-mails until we receive
the second acceptable-email is

E(T2) = E(X2 − 2) = E(X2)− 2 =
2

p
− 2 = 2

1− p

p

= 2
1− 0.7

0.7
= 2

3

7
=

6

7
≈ 0.857.

Moreover, we have

P (T2 ≥ 2) = 1− P (T2 = 0)− P (T2 = 1) = 1− (0 + 1)p2q0 − (1 + 1)p2q1

= 1− 0.72 − 2(0.7)20.3 = 0.216.

3.a
The likelihood function is given by

L(λ) =
n
∏

i=1

f(xi;λ) =
n
∏

i=1

1

2λ
exp

(

−|xi|
λ

)

.

The the log-likelihood is

l(λ) = ln

(

n
∏

i=1

1

2λ
exp

(

−|xi|
λ

)

)

=
n
∑

i=1

ln

(

1

2λ
exp

(

−|xi|
λ

))

=

n
∑

i=1

(

− ln(2λ)− |xi|
λ

)

and further

d

dλ
l(λ) =

n
∑

i=1

(

− 2

2λ
+

|xi|
λ2

)

= −n

λ
+

1

λ2

n
∑

i=1

|xi|
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and

d

dλ
l(λ) = −n

λ
+

1

λ2

n
∑

i=1

|xi| = 0

⇔ −nλ +
n
∑

i=1

|xi| = 0

⇔ λ =
1

n

n
∑

i=1

|xi|.

The MLE candidate is λ̂ = 1
n

∑n

i=1 |xi|. Have to check the second derivative:

J(λ) =
d

dλ2
l(λ) =

n

λ2
− 2

λ3

n
∑

i=1

|xi| =
n

λ2
− 2

λ3
nλ̂

and

J(λ̂) =
n

λ̂2
− 2

λ̂3
nλ̂ =

1

λ̂2

(

n− 2

λ̂
nλ̂

)

= − n

λ̂2
< 0.

Thus, λ̂ is a maximixer and therewith λ̂ is a MLE. Moreover, we have

E(λ̂) = E

(

1

n

n
∑

i=1

|xi|
)

=
1

n

n
∑

i=1

E(|xi|) =
1

n

n
∑

i=1

λ =
1

n
nλ = λ

which means λ̂ is an unbiased estimator. Given the sample, we get

λ̂ =
1

n

n
∑

i=1

|xi| =
1

5
(|1.3|+ | − 0.6|+ |0.2|+ |0.4|+ | − 0.8|) = 0.66.

For the Wald confidence interval, we have V ar(λ̂) = − 1

J(λ̂)
= 1

n
λ̂2 = 0.08712 which

leads to the Wald-interval

λ̂± z0.025

√

V ar(λ̂) = 0.66± 1.96 · 0.2952,

i.e. (0.08, 1.24). We can conclude that we need a larger sample size in order to be

more confident about the estimate λ̂.

4.a
Because Y1 and Y2 are independent, Y1 ∼ Poisson(αβ) and Y2 ∼ Poisson((1− α)β)
we have the following likelihood,

f(y1, y2|α, β) =
(αβ)y1

y1!
exp(−αβ) ∗ ((1− α)β)y2

y2!
exp(−(1− α)β).
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Further, because of α and β are independent, α ∼ Beta(p, q), β ∼ Gamma(p+ q, 1),

π(α, β) = π(α)π(β) =
Γ(p+ q)

Γ(p)Γ(q)
αp−1(1− α)q−1 ∗ 1

Γ(p+ q)
βp+q−1 exp(−β).

Then the joint posterior distribution is given by

f(α, β|y1, y2) ∝ eββy1+y2αy1(1− α)y2αp−1(1− α)q−1eββp+q−1

= βy1+y2+p+q−1e−2βαy1+p−1(1− α)y2+q−1.

This joint probability contains all information from the data and the prior. In this
particular case, the posterior factories into functions of α and β. Therefore, the
marginal distributions are given by

f(α|y1, y2) =

∫ ∞

0

f(α, β|y1, y2)dβ ∝ αy1+p−1(1− α)y2+q−1,

f(β|y1, y2) =

∫ 1

0

f(α, β|y1, y2)dα ∝ βy1+y2+p+q−1e−2β.

That is, α|y1, y2 ∼ Beta(y1 + p, y2 + q) and β|y1 + y2 ∼ Gamma(y1 + y2 + p+ q, 2).

5.a
The standard estimator for µ is µ̂ = X̄ =

∑10
i=1 xi = 347.5. We have known variance

with σ2 = 105 and α = 0.05. We know from the lecture
√
n(X̄ − µ)

σ
∼ N(0, 1),

and therefore

P

(

−zα

2
≤

√
n(X̄ − µ)

σ
≤ zα

2

)

= 1− α

⇔ P

(

X̄ − σ√
n
zα

2
≤ µ ≤ X̄ +

σ√
n
zα

2

)

= 1− α,

i.e. the confidence interval is

[

X̄ − σ√
n
zα

2
, X̄ +

σ√
n
zα

2

]

=

[

347.5−
√

105

10
1.96, 347.5 +

√

105

10
1.96

]

= [341.15, 353.85] .

In case the variance is unknown, we have to replace σ2 by the unbiased estimator
s2 = 1

10−1

∑1
i=1 0(Xi − X̄)2 = 109.61. In this case we know from the lecture,

√
n(X̄ − µ)

s
∼ tn−1,
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and therefore

P

(

−tα

2
,n−1 ≤

√
n(X̄ − µ)

s
≤ tα

2
,n−1

)

= 1− α

⇔ P

(

X̄ − s√
n
tα

2
,n−1 ≤ µ ≤ X̄ +

s√
n
tα

2
,n−1

)

= 1− α,

i.e. the confidence interval is
[

347.5−
√

109.61

10
2.26, 347.5 +

√

109.61

10
2.26

]

= [340.00, 355.00] .

5.b
The first comment is wrong. The unknown parameter µ is either in the interval or
not. The second comment is also wrong because

1

n

n
∑

i=1

xi

lies always in the confidence interval, namely exactly in the center.

Let lCI be the length of the confidence interval (CI) in case the variance is known. We
know from above lCI = 2 σ√

n
z1− 1

2

, and from the text that σ2 ≤ 105 and the maximal

length of the CI for µ has to be 8N/mm2. Thus,

lCI ≤ 2
σ√
n
z1− 1

2

≤ 8

⇔
√
n ≥ 2

√
105

8
1.96 = 5.02

⇔ n ≥ 25.2,

i.e., we need a sample size of n = 26 in order to obtain a confidence interval smaller
than 8N/mm2.

6.a
In the following calculation we choose hour as the time unit, i.e., we have the arrival
rate is λ = 60 and the departure rate is γ = 80 given one server. The expected
time W10 you have to wait until you get served can be derived from the expected
serving time for each person in the front of you plus the remaining serving time
for person who gets served when you arrive at the ticket office. Let Zi =“the time
between each time the queue moves forward”. Because of the memoryless property
of the exponential distribution, we know all Zi’s are exponential distributed with
E(Zi) =

1
γ
= 1

80
. Therefore we have

E(W10) = E

(

10
∑

i=1

Zi

)

=
10
∑

i=1

E(Zi) = 10
1

80
=

1

8
,
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i.e., the expected waiting time until you get served is 1
8
hour = 7.5min.

In order to buy a ticket within 6min, you and all 10 persons in the front of you have
to get served (9 persons are waiting in line plus one person who is being served).
This means, 11 people have to leave the system within 6min = 1

10
hour. Let the

random variable N be the number of events in the interval [0, 6]min = [0, 1
10
]hour,

i.e., the number of people who leave the system. We know, N ∼ Poisson(γ(b−a)) =
Poisson(80 1

10
) = Poisson(8). Therefore,

P (N ≥ 11) = 1− P (N < 11) = 1− P (N ≤ 10) = 1− 0.8159 = 0.1841,

(using the table for the Poisson distribution with x = 10 and µ = 8) i.e., you will get
only with 18% probability a ticket within 6min.

The transition graph with attached specific transition rates is given by:

0 1 2 3 . . .

λ

γ

λ

γ

λ

γ

λ

γ

6.b
Steady state probabilities exist because we have a stable queue (λ < γ) which is irre-
ducible ( all states communicate with each other), positive recurrent and aperiodic.
Let K be the number of people in the queuing system. Then we have,

E(K) =

∞
∑

k=0

kP (K = k) =

∞
∑

k=0

kπk =

∞
∑

k=0

k(
λ

γ
)k
(

1− λ

γ

)

=

(

1− λ

γ

) ∞
∑

k=0

k(
λ

γ
)k =

(

1− λ

γ

) λ
γ

(1− λ
γ
)

=

λ
γ

1− λ
γ

=
λ

γ − λ
=

60

80− 60
= 3,

i.e., the expected number of people in this queuing system is 3.
The probability that more than 3 people are waiting in the line means that there are
more than 4 people in the queuing system,

P (K > 4) = 1− P (K ≤ 4) = 1−
4
∑

k=0

πk

= 1−
(

1− λ

γ

) 4
∑

k=0

(
λ

γ
)k = 1−

(

1− λ

γ

)

1− (λ
γ
)4+1

1− λ
γ

= 1−
(

1− (
λ

γ
)5
)

=

(

60

80

)5

= 0.237.
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There is a probability of 23.7% that more than 3 people waiting in the line. That
means you were quiet unlucky when you arrived to the queue.
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