EXAM IN: $\underline{\text { STA500 INTRODUCTION TO PROBABILITY AND STATISTICS } 2}$
DURATION: 4 HOURS
DATE: NOVEMBER 30th, 2018
PERMITTED AIDS: Approved simple calculator (HP30S, Casio FX82, TI-30,
Citizen SR-270X, Texas BA II Plus or HP17bII+).
THE EXAM CONSISTS OF 5 PROBLEMS ON 3 PAGES, 18 PAGES OF ENCLOSURES.
EXAM RESPONSIBLE: Jan Terje Kvaløy
PHONE: 51832255

Note: Throughout this exam, all logarithms are natural logarithms, so that $\log (x)=\ln (x)$, and 10-based logarithms are not used.

Problem 1: Consider the "Gaussian mixture" distribution for random variable X, with probability density function given as

$$
f_{X}(x)=\frac{1}{2} \mathcal{N}(x ; 1,1)+\frac{1}{2} \mathcal{N}(x ;-1,1),
$$

where $\mathcal{N}\left(x ; \mu, \sigma^{2}\right)$ is the $N\left(\mu, \sigma^{2}\right)$ probability density function evaluated at x, i.e.

$$
\mathcal{N}\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) .
$$

a) Find $E(x)$ and $\operatorname{Var}(X)$.

Now, consider the bivariate random variable (X, Y) with joint probability density:

$$
f_{X, Y}(x, y)=\exp (-y-x y) y, x>0, y>0 .
$$

b) Find the marginal probability density of Y and the conditional probability density of $X \mid Y$.
Are X and Y independent?
Now consider a random variable X with a Weibull distribution with cumulative distribution function

$$
F_{X}(x)=1-\exp \left(-\frac{x^{2}}{2}\right), x>0 .
$$

c) Find the corresponding probability density function.

Which parameters α and β does this Weibull distribution have?
Find $P(X>1)$.

Problem 2: Consider a situation where we conduct N independent experiments, where the outcome of each experiment, $X_{j}, j=1, \ldots, N$, has a Binomial distribution with $n_{j} \geq 1$ trials and a common success probability p (where $0<p<1$). I.e.

$$
X_{j} \sim \operatorname{Binomial}\left(n_{j}, p\right), j=1, \ldots, N
$$

(and it is assumed that n_{j} are fixed quantities).
a) Find the likelihood function for p and show that maximum likelihood estimator \hat{p} is given as

$$
\hat{p}=\frac{\sum_{j=1}^{N} X_{j}}{\sum_{j=1}^{N} n_{j}}
$$

b) Which distribution does $Y=\sum_{j=1}^{N} X_{j}$ have?

Find $E(\hat{p})$ and $\operatorname{Var}(\hat{p})$.
Is \hat{p} a consistent estimator for p as the number of experiments N goes to infinity?

Problem 3: Consider the linear regression situation where we have independent observations given as

$$
Y_{i} \sim N\left(\beta x_{i}, \sigma^{2}\right), i=1, \ldots, n
$$

where β is a parameter, $x_{i}, i=1, \ldots, n$ are known covariates, and σ^{2} is assumed known. Notice that the constant/intercept term in the regression line is set to 0 . The \log-likelihood function for β is given by

$$
l(\beta)=\text { constant }-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(Y_{i}-\beta x_{i}\right)^{2}
$$

a) Show that the maximum likelihood estimator $\hat{\beta}$ is given by

$$
\hat{\beta}=\frac{\sum_{i=1}^{n} Y_{i} x_{i}}{\sum_{i=1}^{n} x_{i}^{2}} .
$$

Which distribution does $\hat{\beta}$ have? Use this information to construct a 95% confidence interval for β.
b) Now notice that $l(\beta)$ can be written as

$$
l(\beta)=\mathrm{constant}-\frac{\sum_{i} x_{i}^{2}}{2 \sigma^{2}}(\beta-\hat{\beta})^{2}
$$

(you do not need to show this). Consider a $N\left(\beta_{0}, \sigma_{0}^{2}\right)$-prior for β. Find the posterior distribution of β, i.e. $p\left(\beta \mid Y_{1}, \ldots, Y_{n}\right)$. Hint: You may find the equality

$$
-\frac{(x-a)^{2}}{2 b}-\frac{(x-c)^{2}}{2 d}=-\frac{1}{2\left(\frac{b d}{b+d}\right)}\left(x-\frac{a d+b c}{b+d}\right)^{2}+C(a, b, c, d)
$$

(where $C(a, b, c, d)$ does not depend on x) useful.

Problem 4: Consider a discrete time Markov chain $\left\{X_{n}\right\}$ with state space $\mathcal{S}=$ $\{0,1,2\}$ and transition probability matrix P given as

$$
P=\left(\begin{array}{ccc}
0 & \frac{9}{10} & \frac{1}{10} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

a) Draw a transition graph of the Markov chain (remember to label all the arrows).

Find the two step transition probability matrix P^{2}.
Find $P\left(X_{3}=0 \mid X_{1}=0\right)$ and $P\left(X_{4}=0 \mid X_{2}=0, X_{1}=1\right)$.
b) Why does this Markov chain admit steady state probabilities?

Find the steady state probabilities.
Calculate $E\left(X_{n}\right)$.

Problem 5: Consider a Poisson process X_{t} with intensity $\lambda\left(\right.$ and $\left.X_{0}=0\right)$.
a) Which distribution does the time until the nth event in the Poisson process have?

Suppose $\lambda=5$, find $P\left(X_{1}>5\right)$.
Suppose $\lambda=5$, find the expected time until the 5 th event occur.

Solutions

1,a)
First question: $E(X)=\frac{1}{2} \times 1+\frac{1}{2} \times-1=0$.
Second question: $\operatorname{Var}(X)=E\left(X^{2}\right)=\frac{1}{2}\left(1+1^{2}\right)+\frac{1}{2}\left(1+(-1)^{2}\right)=2$.

1,b)
The density admit the factorisation $f_{X, Y}(x, y)=\exp (-y) \times \exp (-x y) y$ where the former is the marginal of Y (i.e. exponential with mean 1) and the latter is the $X \mid Y$ density (exponential with mean $1 / y$).
Alternatively, from first principles:

$$
f_{Y}(y)=\int_{0}^{\infty} f_{X, Y}(x, y) d x=\exp (-y) \underbrace{\int \exp (-x y) y d x}_{=1}=\exp (-y)
$$

i.e. exponential with mean 1 . The conditional obtains as

$$
f_{X \mid Y}(x \mid y)=\frac{f_{(X, Y)}(x, y)}{f_{Y}(y)}=\frac{\exp (-y-x y) y}{\exp (-y)}=\exp (-x y) y
$$

i.e. exponential with mean $1 / y$. As the distribution of $X \mid Y$ depends on y, X and Y are dependent.

1,c)
Density;

$$
f_{X}(x)=\frac{d}{d x} F_{X}(x)=x \exp \left(-\frac{x^{2}}{2}\right),
$$

thus, this corresponds to a Weibull distr. with parameters $\alpha=1 / 2$ and $\beta=2$. The sought probability obtains as

$$
P(X>1)=1-F_{X}(1)=\exp (-1 / 2) \approx 0.6065306597
$$

2,a)
Likelihood function:

$$
L\left(p ; X_{1}, \ldots, X_{N}\right)=\prod_{j=1}^{N} f_{X_{j}}\left(X_{j}\right) \propto \prod_{j=1}^{N} p^{X_{j}}(1-p)^{n_{j}-X_{j}}=p^{\sum_{j} X_{j}}(1-p)^{\left(\sum_{j} n_{j}\right)-\left(\sum_{j} X_{j}\right)} .
$$

Log-likelihood function

$$
l(p)=\text { constan }+\left(\sum_{j} X_{j}\right) \log (p)+\left(\left(\sum_{j} n_{j}\right)-\left(\sum_{j} X_{j}\right)\right) \log (1-p)
$$

Derivative wrt p equal to zero

$$
\begin{align*}
\frac{d}{d p} l(p) & =\frac{\sum_{j} X_{j}}{p}-\frac{\left(\sum_{j} n_{j}\right)-\left(\sum_{j} X_{j}\right)}{1-p}=0 \tag{1}\\
& \Downarrow \tag{2}\\
0 & =(1-p) \sum_{j} X_{j}-p\left(\left(\sum_{j} n_{j}\right)-\left(\sum_{j} X_{j}\right)\right) \tag{3}\\
& \Downarrow \tag{4}\\
\hat{p} & =\frac{\sum_{j} X_{j}}{\sum_{j} n_{j}} \tag{5}
\end{align*}
$$

Check second derivative:

$$
\frac{d^{2}}{d p^{2}} l(p)=-\frac{\sum_{j} X_{j}}{p^{2}}-\frac{\left(\sum_{j} n_{j}\right)-\left(\sum_{j} X_{j}\right)}{(1-p)^{2}},
$$

which must be negative since $\sum_{j} X_{j} \geq 0$ and $\left(\sum_{j} n_{j}\right)-\left(\sum_{j} X_{j}\right) \geq 0$.
Y is the sum of N independent Binomially distributed variables with common p and is therefore also Binomially distributed with parameters $\sum_{j} n_{j}$ and p. Moreover, $E(Y)=p \sum_{j} n_{j}$ and $\operatorname{Var}(Y)=p(1-p) \sum_{j} n_{j}$, and therefore

$$
E(\hat{p})=\frac{1}{\sum_{j} n_{j}} E(Y)=p, \operatorname{Var}(\hat{p})=\frac{1}{\left(\sum_{j} n_{j}\right)^{2}} p(1-p) \sum_{j} n_{j}=\frac{p(1-p)}{\sum_{j} n_{j}}
$$

\hat{p} is unbiased and the variance vanishes as N goes to infinity (as $n_{j} \geq 1$). Thus the estimator is consistent.
$3, a)$
Derivative of log-likelihood equal to 0

$$
\begin{align*}
\frac{d}{d \beta} l(\beta) & =\frac{1}{\sigma^{2}} \sum_{i} x_{i}\left(y_{i}-\beta x_{i}\right) \tag{6}\\
& \Downarrow \tag{7}\\
\sum_{i} x_{i} y_{i} & =\beta \sum_{i} x_{i}^{2} \tag{8}\\
& \Downarrow \tag{9}\\
\hat{\beta} & =\frac{\sum_{i} x_{i} y_{i}}{\sum x_{i}^{2}} \tag{10}
\end{align*}
$$

Second derivative:

$$
\frac{d^{2}}{d \beta^{2}}=-\frac{1}{\sigma^{2}} \sum_{i} x_{i}^{2}
$$

which must be negative.
Notice that $\hat{\beta}$ is a linear combination of Gaussian random variable and therefore also Gaussian. Thus it remains to find the mean and variance of $\hat{\beta}$:

$$
E(\hat{\beta})=\frac{1}{\sum_{i} x_{i}^{2}} \sum_{i} x_{i} E\left(Y_{i}\right)=\beta
$$

$$
\operatorname{Var}(\hat{\beta})=\frac{1}{\left(\sum_{i} x_{i}^{2}\right)^{2}} \sum_{i} x_{i}^{2} \operatorname{Var}\left(Y_{i}\right)=\frac{\sigma^{2}}{\sum_{i} x_{i}^{2}}
$$

I.e. $\hat{\beta} \sim N\left(\beta, \sigma^{2} / \sum_{i} x_{i}^{2}\right)$.

Based on this information, it is clear that

$$
g(\beta, \hat{\beta})=\frac{\hat{\beta}-\beta}{\sigma / \sqrt{\sum_{i} x_{i}^{2}}} \sim N(0,1)
$$

Thus,

$$
\begin{align*}
& 0.95=P\left(-1.96<\frac{\hat{\beta}-\beta}{\sigma / \sqrt{\sum_{i} x_{i}^{2}}}<1.96\right) \tag{11}\\
& 0.95=P\left(\hat{\beta}-1.96 \sigma / \sqrt{\sum_{i} x_{i}^{2}}<\beta<\hat{\beta}+1.96 \sigma / \sqrt{\sum_{i} x_{i}^{2}}\right) \tag{12}
\end{align*}
$$

3,b)
The posterior obtains as $p(\beta \mid$ data $) \propto L(\beta) p(\beta)$. Thus, in this case

$$
p(\beta \mid \text { data }) \propto \exp \left(-\frac{\sum_{i} x_{i}^{2}}{2 \sigma^{2}}(\beta-\hat{\beta})^{2}-\frac{\left(\beta-\beta_{0}\right)^{2}}{2 \sigma_{0}^{2}}\right)
$$

Now, using the hint (with $x=\beta, a=\hat{\beta}, b=\sigma^{2} / \sum_{i} x_{i}^{2}, c=\beta_{0}, d=\sigma_{0}^{2}$) one obtains that

$$
p(\beta \mid \text { data }) \propto \exp \left(-\frac{(\beta-B)^{2}}{2 V}\right)
$$

where

$$
B=\frac{\hat{\beta} \sigma_{0}^{2}+\beta_{0} \sigma^{2} / \sum_{i} x_{i}^{2}}{\sigma_{0}^{2}+\sigma^{2} / \sum_{i} x_{i}^{2}}
$$

and

$$
V=\frac{\sigma_{0}^{2} \sigma^{2} / \sum_{i} x_{i}^{2}}{\sigma_{0}^{2}+\sigma^{2} / \sum_{i} x_{i}^{2}}
$$

Thus, recognizing the latter representation of the posterior as a Gaussian kernel, the posterior distribution of β is $N(B, V)$. 4,a)

The transition graph looks something like

The two step transition matrix obtains as

$$
P^{2}=P \cdot P=\left(\begin{array}{ccc}
\frac{9}{10} & \frac{1}{10} & 0 \\
0 & \frac{9}{10} & \frac{1}{10} \\
1 & 0 & 0
\end{array}\right)
$$

$P\left(X_{3}=0 \mid X_{1}=0\right)=P\left(X_{4}=0 \mid X_{2}=0, X_{1}=1\right)=9 / 10$.
4,b)
The chain irreducible (all states communicate), has a finite state space, and is aperiodic. The latter can be seen e.g. as the chain may return to state 0 in $2,3,4,5, \ldots$ transitions, and therefore the period must be one.
The steady state probabilities π obtain as (choosing two of the equations of)

$$
\pi=P^{T} \pi=\left(\begin{array}{ccc}
0 & 1 & 0 \tag{13}\\
0.9 & 0 & 1 \\
0.1 & 0 & 0
\end{array}\right) \pi
$$

and $\sum_{i} \pi_{i}=1$. Choosing the former and latter of the equations of (13), we obtain

$$
\pi_{0}=\pi_{1}, \pi_{2}=0.1 \pi_{0}, \pi_{0}+\pi_{1}+\pi_{2}=1
$$

Solving for π_{0} first (based on last equation):

$$
\pi_{0}+\pi_{0}+0.1 \pi_{0}=1 \Rightarrow \pi_{0}=1 /(2+0.1)=10 / 21 \approx 0.4761904762
$$

And thus: $\pi_{1}=\pi_{0}=10 / 21, \pi_{2}=\pi_{0} / 10=1 / 21 \approx 0.04761904762$.
The sought expectation is $E\left(X_{n}\right)=0 \times 10 / 21+1 \times 10 / 21+2 \times 1 / 21=4 / 7 \approx$ 0.5714285714 .

5,a)
First part; time until nth event has a Gamma distribution with shape parameter $\alpha=n$ and scale parameter $\beta=1 \lambda$.
Second part; X_{1} has a Poisson distribution with mean 5; from the table we have that $P\left(X_{1}>5\right)=1-P\left(X_{1} \leq 5\right)=1-0.6160=0.384$ Third part; based on first part, expected time until 5 th event is the expectation in the gamma distribution $\alpha \beta=5 / \lambda=1$.

