Solution exercise set 2

Exercises from the book:

5.58/5.60

Let X be the number of hurricanes per year, and assume that $X \sim$ Poisson (6).
a)

$$
P(X<4)=P(X \leq 3)=\sum_{x=0}^{3} \frac{6^{x}}{x!} e^{-6} \stackrel{\text { table }}{=} 0.1512
$$

Or by direct calculation:

$$
P(X<4)=P(X \leq 3)=\frac{6^{0}}{0!} e^{-6}+\frac{6^{1}}{1!} e^{-6}+\frac{6^{2}}{2!} e^{-6}+\frac{6^{3}}{3!} e^{-6}=0.1512
$$

b)

$$
\begin{gathered}
P(6 \leq X \leq 8) \\
=P(X \leq 8)-P(X \leq 5)=\sum_{x=0}^{8} \frac{6^{x}}{x!} e^{-6}-\sum_{x=0}^{5} \frac{6^{x}}{x!} e^{-6} \\
\stackrel{\text { table }}{=} 0.8472-0.4457=0.4015
\end{gathered}
$$

5.61/5.65

Let $X=$ "the number of 10000 forms containing an error". We then do $n=10000$ independent trials where we in each trial are checking if the form is containing an error or not and the probability of selecting a form with an error is the same, $p=1 / 1000$, in each trial. I.e. $X \sim B(10000,0.001)$. Since we are in a situation with a large n and a small p we can use the approximation to the Poisson distribution (makes the calculations simpler). X will be approximately Poisson distributed with expectation $\mu=n p=10000 \cdot 0.001=10$

$$
P(6 \leq X \leq 8)=P(X \leq 8)-P(X \leq 5) \stackrel{\text { table }}{=} 0.3328-0.0671=\underline{\underline{0.2657}}
$$

5.92/5.96

Let $Y=$ "the number of kids until the second boy". Y is then having a negative binomial distribution with $k=2$ and $p=0.5$.

$$
P(Y=4)=\binom{4-1}{2-1} \cdot 0.5^{2} \cdot 0.5^{4-2}=\underline{\underline{0.1875}}
$$

6.15/6.11
$X \sim N\left(24,3.8^{2}\right)$
a)

$$
\begin{aligned}
P(X \geq 30)=1-P(X<30)= & 1-P\left(\frac{X-24}{3.8}<\frac{30-24}{3.8}\right)=1-P(Z<1.58) \\
& =1-0.9429=\underline{\underline{0.0571}}
\end{aligned}
$$

b)

$$
\begin{aligned}
P(X \geq 15) & =1-P(X<15)=1-P\left(\frac{X-24}{3.8}<\frac{15-24}{3.8}\right) \\
& =1-P(Z<-2.37)=1-0.0089=0.9911
\end{aligned}
$$

He will be late $\underline{\underline{99.11 \%}}$ of the days.
c)

$$
\begin{aligned}
P(X \geq 25) & =1-P(X<25)=1-P\left(\frac{X-24}{3.8}<\frac{25-24}{3.8}\right)=1-P(Z<0.26) \\
& =1-0.6026=\underline{\underline{0.3974}}
\end{aligned}
$$

d) $k=$ the length of time above which we find 15% of the trips.
$P(X \geq k)=1-P(X<k)=1-P\left(\frac{x-24}{3.8}<\frac{k-24}{3.8}\right)=1-P\left(Z<\frac{k-24}{3.8}\right)=0.15$
$P\left(Z<\frac{k-24}{3.8}\right)=0.85$
$\frac{k-24}{3.8}=1.04 \quad \Rightarrow \quad k=3.8 \cdot 1.04+24=27.95=27$ minutes, 57 seconds.
e) $Y=$ the number of trips among the next 3 which takes more than 30 minutes.
$p=P(X \geq 30)=0.057$
$Y \sim B(3,0.057)$
$P(Y=2)=\binom{3}{2} 0.057^{2}(1-0.057)^{3-2}=3 \cdot 0.057^{2} \cdot 0.943=\underline{\underline{0.0092}}$

Exercise 1:

a) We have:

- A specified number of trials, $n=12$ patients.
- The trials are independent, the patients catch the infection or not independent of each other.
- We are only checking "success" or not "success" in each trial (if a patient is infected or not).
- The probability of "success" is the same in each trial, $p=0.25$ (all patients are assumed to have the same probability of catching the infection).
I.e., the conditions for the binomial distribution are fulfilled, and we thus have that $X=$ "the number of the 12 patients catching the disease" is binomially distributed with parameters $n=12$ and $p=0.25, X \sim B(12,0.25)$.
b)
$P(X=x)=\binom{12}{x}(0.25)^{x}(0.75)^{12-x}$ which gives $P(X=0)=\binom{12}{0}(0.25)^{0}(0.75)^{12}=\underline{\underline{0.032}}$.
Further $P(X=1)=\binom{12}{1}(0.25)^{1}(0.75)^{11}=0.127$ and hence:

$$
P(X>1)=1-P(X \leq 1)=1-[P(X=0)+P(X=1)]=1-0.032-0.127=\underline{\underline{0.841}}
$$

c)
$\mathrm{E}(X)=n p=12 \cdot 0.25=\underline{\underline{3}}$, and $\mathrm{SD}(X)=\sqrt{\operatorname{Var}(X)}=\sqrt{n p(1-p)}=\sqrt{12 \cdot 0.25 \cdot 0.75}=\underline{\underline{1.5}}$.

Exercise 2:

a) With $\mu=\lambda t=2 \cdot 1$ we get $P(X=x)=\frac{2^{x}}{x!} e^{-2}$ which gives $P(X=2)=\frac{2^{2}}{2!} e^{-2}=\underline{\underline{0.271}}$. Further $P(X=0)=\frac{2^{0}}{0!} e^{-2}=0.135$ and $P(X=1)=\frac{2^{1}}{1!} e^{-2}=0.271$, and thus

$$
\begin{aligned}
P(X \geq 3) & =1-P(X<3)=1-[P(X=0)+P(X=1)+P(X=2)] \\
& =1-0.135-0.271-0.271=\underline{\underline{0.323}} .
\end{aligned}
$$

Alternatively $P(X \leq 2)$ can be found from the table.
b) When we look at a period of 0.5 years we get that the number of accidents is Poisson distributed with $\mu=\lambda t=2 \cdot 0.5=1$, i.e. $P(X=2)=\frac{1^{2}}{2!} e^{-1}=\underline{\underline{0.184}}$
c) Over a ten years period the number of accidents is Poisson distributed with $\mu=\lambda t=2$. $10=20$, i.e. $P(X=x)=\frac{20^{x}}{x!} e^{-20}$. We can use this to calculate $P(X \geq 20)=1-P(X \leq 19)$ exactly, but here it is more convenient to use the approximation to the normal distribution. Since $\mu>15$ the normal approximation is good, and we get

$$
\begin{aligned}
P(X \geq 20) & =1-P(X \leq 19)=1-P\left(\frac{X-20}{\sqrt{20}} \leq \frac{19+0.5-20}{\sqrt{20}}\right) \\
& =1-P(Z \leq-0.11)=1-0.4562=\underline{\underline{0.5438}}
\end{aligned}
$$

d)

$$
P(X>2 \mid X \geq 1)=\frac{P(X>2 \cap X \geq 1)}{P(X \geq 1)}=\frac{P(X>2)}{1-P(X=0)}=\frac{P(X \geq 3)}{1-0.135}=\frac{0.323}{0.865}=\underline{\underline{0.373}} .
$$

Exercise 3:

$$
\begin{aligned}
P\left(X_{1}>800\right) & =1-P\left(X_{1} \leq 800\right)=1-P\left(Z \leq \frac{800-750}{25}\right) \\
& =1-P(Z \leq 2)=1-0.9772=\underline{\underline{0.0228}} \\
P\left(X_{1} \leq 800 \mid X_{2}>750\right) & \stackrel{\text { indep.! }}{=} P\left(X_{1} \leq 800\right)=\underline{\underline{0.9772}} \\
P\left(X_{1}+X_{2}>1600\right) & =1-P\left(X_{1}+X_{2} \leq 1600\right) \\
& =1-P\left(\frac{X_{1}+X_{2}-\mathrm{E}\left(X_{1}+X_{2}\right)}{\sqrt{\operatorname{Var}\left(X_{1}+X_{2}\right)}} \leq \frac{1600-\mathrm{E}\left(X_{1}+X_{2}\right)}{\sqrt{\operatorname{Var}\left(X_{1}+X_{2}\right)}}\right) \\
& =1-P\left(Z \leq \frac{1600-2 \cdot 750}{\sqrt{2 \cdot 25^{2}}}\right)=1-P(Z \leq 2.83) \\
& =1-0.9977=\underline{\underline{0.0023}}
\end{aligned}
$$

Exercise 4:

a)

$$
\begin{aligned}
P(X<7.5) & =P\left(Z<\frac{7.5-8.2}{0.4}\right)=P(Z<-1.75)=\underline{\underline{0.04}} \\
P(X>8.2 \mid X>7.5) & \left.=\frac{P(X>8.2 \cap X>7.5)}{P(X>7.5)}\right)=\frac{P(X>8.2)}{1-0.04}=\frac{1-P(Z \leq 0)}{0.04}=\frac{0.5}{0.96}=\underline{\underline{0.52}}
\end{aligned}
$$

b)

We have a situation with

- Independent trials (independent capacity of the beams).
- We check "success" or not "success" in each trial (can carry 7.5 tons or can not) until we have found 20 "successes".
- The probability of "success" is the same in all trials, $p=P(X>7.5)=1-0.04=0.96$.
Y is then having a negative binomial distribution with $k=20$ and $p=0.96$.

$$
\begin{aligned}
P(Y<22) & =P(Y \leq 21)=P(Y=20)+P(Y=21) \\
& =\binom{20-1}{20-1} 0.96^{20}(1-0.96)^{20-20}+\binom{21-1}{20-1} 0.96^{20}(1-0.96)^{21-20} \\
& =0.442+0.354=\underline{\underline{0.796}} \\
\mathrm{E}(X) & =\frac{k}{p}=\frac{20}{0.96}=\underline{\underline{20.8}}
\end{aligned}
$$

