
STA500 Introduction to Probability and Statistics 2, autumn 2018.

Solution exercise set 4

Exercises from the book:

8.13

The easiest way to do this is to just use the function for calculating sample standard

deviations on your calculator. Then you just punch in the data on the calculator and get

the sample standard deviation calculated.

Alternatively you can approach the problem by first simplify the formula for s2, for instance

to (see also theorem 8.1 in the textbook):

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 =
1

n− 1

n∑
i=1

(x2
i − 2x̄xi + x̄2) =

1

n− 1
(
n∑
i=1

x2
i − 2x̄

n∑
i=1

xi + nx̄2)

=
1

n− 1
(
n∑
i=1

x2
i − 2x̄nx̄+ nx̄2) =

1

n− 1
(
n∑
i=1

x2
i − nx̄2)

For the given data we get x̄ =
∑20
i=1 xi/20 = 53.3/20 = 2.665 and

∑20
i=1 x

2
i = 148.55 which

gives

s2 =
1

20− 1
(148.55− 20 · 2.6652) = 0.342

The sample (or estimated or empirical) standard deviation (the book wrongly writes just

“the standard deviation” in the exercise text) then becomes: s =
√

0.342 = 0.585.

8.14

a) If we add a constant c to all the data x1, . . . , xn, the data becomes x1 + c, . . . , xn + c,

and the average becomes x̄+ c. We then get:

S2
X+c =

1

n− 1

n∑
i=1

((xi + c)− (x̄+ c))2 =
1

n− 1

n∑
i=1

(xi − x̄)2 = S2
X

b) If we multiply all data x1, . . . , xn by a constant c, the data becomes cx1, . . . , cxn, and

the average becomes cx̄. We then get:

S2
cX =

1

n− 1

n∑
i=1

(cxi − cx̄)2 =
c2

n− 1

n∑
i=1

(xi − x̄)2 = c2S2
X
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8.21

Since σX̄ = SD(X̄) =
√

Var(X̄) =
√
σ2/n = σ/

√
n and µX̄ = E(X̄) = µ with n = 40,

σ = 15 and µ = 240 (which holds if the machine is correctly adjusted!) we get that the

machine is correctly adjusted if 40 is in the interval

[µX̄ − 2σX̄ , µX̄ + 2σX̄ ] = [240− 2 · 15/
√

40, 240 + 2 · 15/
√

40] = [235.3, 244.7]

Since 236 is in this interval they made the correct decision.

Notice that from the rule of thumb saying that in many cases around 95% of the measure-

ments will fall in an interval plus/minus two standard deviations from the expectation, we

get in the present example that if the machine is correctly adjusted there is a probability

of around 95% of getting a value in the calculated interval.

8.26

Let X be the amount of time spent by a random customer. Notice that the distribution

of X has not be specified! However, we know that X is having expectation µ = 3.2 and

standard deviation σ = 1.6 . Further let X̄ = 1
64

∑64
i=1Xi be the average time spent by 64

randomly selected customers. The central limit theorem (CLT) now gives that:

Z =
X̄ − µ
σ/
√
n

=
X̄ − 3.2

1.6/8
=
X̄ − 3.2

0.2
≈ N(0, 1)

i.e. Z is having an approximate normal distribution.

a)

P (X̄ ≤ 2.7) = P (
X̄ − 3.2

0.2
≤ 2.7− 3.2

0.2
)

= P (Z ≤ −2.5)
CLT≈ 0.0062

b)

P (X̄ > 3.5) = 1− P (Z ≤ 3.5− 3.2

0.2
)

CLT≈ 1− 0.9332

= 0.0668

c)

P (3.2 ≤ X̄ ≤ 3.4) = P (X̄ < 3.4)− P (X̄ < 3.2)

= P (Z <
3.4− 3.2

0.2
)− P (Z <

3.2− 3.2

0.2
)

CLT≈ 0.8413− 0.5

= 0.3413
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9.81

The exercise text is maybe a bit unclear in this exercise. When it is said that x1, . . . , xn is

a Bernoulli-process (or the outcome of a binomial trial) with parameter p, this means that

x1, . . . , xn is the outcome of a 0-1 variable X1, . . . , Xn with distribution

f(x) = px(1− p)(1−x) , x = 0, 1

(i.e. P (X = 1) = p and P (X = 0) = 1− p). We then get

L(p;x1, . . . , xn)
indep.

=
n∏
i=1

f(xi, p) =
n∏
i=1

pxi(1− p)1−xi

= p
∑n

i=1
xi(1− p)n−

∑n

i=1
xi

l(p;xi, . . . , xn) = lnL(p;xi, . . . , xn) =
n∑
i=1

xi ln p+

(
n−

n∑
i=1

xi

)
ln (1− p)

∂l(p;x1, . . . , xn)

∂p
=

1

p

n∑
i=1

xi −
1

1− p

(
n−

n∑
i=1

xi

)
= 0

⇒ (1− p)
n∑
i=1

xi − p

(
n−

n∑
i=1

xi

)
= 0

n∑
i=1

xi − p
n∑
i=1

xi − pn+ p
n∑
i=1

xi = 0

⇒ p̂ =
1

n

n∑
i=1

Xi

Checking that we have found a maximum:

∂2l(p;x1, . . . , xn)

∂p2
= − 1

p2

n∑
i=1

xi −
1

(1− p)2

(
n−

n∑
i=1

xi

)
< 0 i.e. maximum!

We can also check if the estimator is unbiased. Notice first that E(X) =
∑
x xf(x) =

0(1− p) + 1p = p. Then:

E[p̂] = E[
1

n

n∑
i=1

Xi] =
1

n

n∑
i=1

EXi =
1

n

n∑
i=1

p = p

We see that E[p̂] = p, the estimator is unbiased.

9.84/9.82

a)

L(α, β;x1, ..xn) =
n∏
i=1

f(xi;α, β) =
n∏
i=1

αβxβ−1
i e−αx

β
i

= (αβ)n(
n∏
i=1

xβ−1
i )e−

∑n

i=1
αxβi = (αβ)ne−α

∑n

i=1
xβi

n∏
i=1

xβ−1
i
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b)

l(α, β;x1, ..xn) = lnL(α, β;x1, ..xn) = n ln(α) + n ln(β)− α
n∑
i=1

xβi +
n∑
i=1

ln(xβ−1
i )

= n ln(α) + n ln(β)− α
n∑
i=1

xβi + (β − 1)
n∑
i=1

ln(xi)

Since we here shall optimize over two parameters, α and β we must solve the equations
∂l(α,β)
∂α = 0 and ∂l(α,β)

∂β = 0 simultaneously, i.e. solve the system of equations:

∂l(α, β)

∂α
=

n

α
−

n∑
i=1

xβi = 0

∂l(α, β)

∂β
=

n

β
− α

n∑
i=1

xβi ln(xi) +
n∑
i=1

ln(xi) = 0

The first equation gives a simple expression for α (α = n/
∑n
i=1 x

β
i ) which can be inserted in

the second equation, and we can then try to solve this equation with respect to β. However,

this equation can not be solved analytically, numerical methods must be applied to find a

solution.

Exercise 1:

We first calculate the cumulative distribution function of X:

FX(x) =

∫ x

0
λe−λtdt = 1− e−λx for x > 0

To find the probability density of V = max(X1, X2) we first calculate the cumulative

distribution function:

FV (v) = P (max(X1, X2) ≤ v) = P (X1 ≤ v ∩X2 ≤ v)
indep.

= P (X1 ≤ v)P (X2 ≤ v)

= FX(v)2 = (1− e−λv)2 = 1− 2e−λv + e−2λv for v > 0

I.e. the pdf of V becomes:

fV (v) = F
′
(v) = 2λe−λv − 2λe−2λv for v > 0

For the exponential distribution we have that E(X) =
∫∞

0 xλe−λxdx = 1
λ , and we can use

this result also in the calculation of E(V ):

E(V ) =

∫ ∞
−∞

vf(v)dv =

∫ ∞
0

v(2λe−λv − 2λe−2λv)dv = 2

∫ ∞
0

vλe−λvdv −
∫ ∞

0
v2λe−2λvdv

= 2
1

λ
− 1

2λ
=

3

2λ

Thus since E(X) = 1
λ we have that E(X) < E(V ) < 2E(X) which is as expected since V is

the largest of to X-values. Since V = max(X1, X2) we will expect that E(V ) > E(X) and

that E(V ) < E(X1 +X2) = 2E(X).
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Exercise 2:

a)

E(µ̂1) =
1

25
[

10∑
i=1

E(Xi) +
15∑
i=1

E(Yi)] =
1

25
[

10∑
i=1

µ+
15∑
i=1

µ] =
1

25
[10µ+ 15µ] = µ

E(µ̂2) =
6

7
E(X̄) +

1

7
E(Ȳ ) =

6

7
µ+

1

7
µ = µ

I.e. both estimators are unbiased.

Var(µ̂1) = Var(
1

25
[

10∑
i=1

Xi +
15∑
i=1

Yi]) =
1

252
Var[

10∑
i=1

Xi +
15∑
i=1

Yi]

indep.
=

1

252
[

10∑
i=1

Var(Xi) +
15∑
i=1

Var(Yi)] =
1

252
[10 · 0.01 + 15 · 0.09] = 0.00232

Var(µ̂2) = Var(
6

7
X̄ +

1

7
Ȳ )

indep.
= (

6

7
)2Var(X̄) + (

1

7
)2Var(Ȳ )

= (
6

7
)2 0.01

10
+ (

1

7
)2 0.09

15
= 0.000857

Since both estimators are unbiased and Var(µ̂1) > Var(µ̂2), µ̂2 is the best estimator.

b) Since we want to have an unbiased estimator, we must have:

E(µ̂) = aE(X̄) + bE(Ȳ ) = aµ+ bµ = µ

I.e. we must have a+ b = 1. Further we want to have an estimator with as small variance

as possible. The variance of the estimator becomes:

Var(µ̂)
indep.

= a2Var(X̄) + b2Var(Ȳ ) = a2 0.01

10
+ b2

0.09

15
= 0.001a2 + 0.006b2

I.e. to find the unbiased estimator with the smallest possible variance, we must find the

values a and b where a+ b = 1 and where at the same time 0.001a2 + 0.006b2 is as small as

possible. Substituting b = 1− a into the last expression we get the following expression to

minimize:

V (a) = 0.001a2 + 0.006(1− a)2 = 0.007a2 − 0.012a+ 0.006

V ′(a) = 0.014a− 0.012 = 0

⇒ a =
0.012

0.014
=

6

7

⇒ b = 1− 6

7
=

1

7

Hence we see that µ̂2 from b) is the best unbiased estimator in the present case!
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Exercise 3:

Let X1 denote the result of a measurement using method 1 and let X2 denote the result of

a measurement using method 2.

a)

P (X1 < 4.0) = P (Z <
4.0− 4.3

0.5
) = P (Z < −0.60) = 0.2743

P (X2 > µ+ σ2) = 1− P (X2 ≤ µ+ σ2) = 1− P (Z ≤ µ+ σ2 − µ
σ2

)

= 1− P (Z ≤ 1) = 1− 0.8413 = 0.1587

b)

L(µ) =
n∏
i=1

f(xi;µ) = f(x1;µ)f(x2;µ)

=
1√

2πσ1

e−(x1−µ)2/(2σ2
1) 1√

2πσ2

e−(x2−µ)2/(2σ2
2)

=
1

2πσ1σ2
e−(x1−µ)2/(2σ2

1)−(x2−µ)2/(2σ2
2)

l(µ) = lnL(µ) = ln(1)− ln(2πσ1σ2)− (x1 − µ)2

2σ2
1

− (x2 − µ)2

2σ2
2

Take the derivative with respect to µ and set equal to zero:

∂l(µ)

∂µ
= −2(x1 − µ)(−1)

2σ2
1

− 2(x2 − µ)(−1)

2σ2
2

= 0

x1 − µ
σ2

1

+
x2 − µ
σ2

2

= 0

x1

σ2
1

+
x2

σ2
2

=
µ

σ2
1

+
µ

σ2
2

σ2
2x1 + σ2

1x2 = σ2
2µ+ σ2

1µ

µ̂ =
σ2

2X1 + σ2
1X2

σ2
1 + σ2

2

c)

E(µ̂) = E

(
σ2

2X1 + σ2
1X2

σ2
1 + σ2

2

)
=
σ2

2E(X1) + σ2
1E(X2)

σ2
1 + σ2

2

=
σ2

2µ+ σ2
1µ

σ2
1 + σ2

2

= µ

I.e. the estimator is unbiased.

Var(µ̂) = Var

(
σ2

2X1 + σ2
1X2

σ2
1 + σ2

2

)
= Var

(
σ2

2

σ2
1 + σ2

2

X1 +
σ2

1

σ2
1 + σ2

2

X2

)

=

(
σ2

2

σ2
1 + σ2

2

)2

Var(X1) +

(
σ2

1

σ2
1 + σ2

2

)2

Var(X2) =
σ4

2σ
2
1 + σ4

1σ
2
2

(σ2
1 + σ2

2)2

=
σ2

1σ
2
2(σ2

2 + σ2
1)

(σ2
1 + σ2

2)2
=

σ2
1σ

2
2

σ2
1 + σ2

2
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