STA500 Introduction to Probability and Statistics 2, autumn 2018.

Solution exercise set 5

Exercise 1:

a)

$$L(\lambda) = \prod_{i=1}^{n} (\lambda e^{-\lambda t_i}) = \lambda^n e^{-\lambda \sum_{i=1}^{n} t_i}$$

$$l(\lambda) = \ln L(\lambda; t_1, ...t_n) = \ln(\lambda)^n + \ln(e^{-\lambda \sum_{i=1}^{n} t_i}) = n \ln(\lambda) - \lambda \sum_{i=1}^{n} t_i$$

$$\frac{dl(\lambda)}{d\lambda} = \frac{n}{\lambda} - \sum_{i=1}^{n} t_i = 0 \qquad \Rightarrow \lambda = \frac{n}{\sum_{i=1}^{n} t_i}$$

I.e. the MLE is given as: $\hat{\lambda} = \frac{n}{\sum_{i=1}^{n} T_i}$. Estimate: $\hat{\lambda} = \frac{12}{108.5} = \underline{0.11}$.

b) We start by considering the distribution of $Y = 2\lambda T_i$. From the result on transformations (see collection of formulas) we have for the exponential distribution that $2X/\beta$ has a χ_2^2 -distribution if X is exponentially distributed with parameter β . In the current setting we have that T_i is exponentially distributed with expectation $1/\lambda$, i.e. $\beta = 1/\lambda$, and it thus follow that $Y = 2T_i/\beta = 2\lambda T_i$ is having a χ_2^2 -distribution.

Further we have from results of linear combinations (collection of formulas) that since a sum of independent χ^2 -distributed variables is χ^2 -distributed with parameter ("degrees of freedom") equal to the sum of the parameters in the distribution of each variable, we will have that $Z = 2\lambda \sum_{i=1}^{n} T_i = \sum_{i=1}^{n} 2\lambda T_i$ is having a χ^2_{2n} -distribution (by being a sum of *n* indep. χ^2_2 -distributed variables).

c)

$$\mathbf{E}(\hat{\lambda}) = n\mathbf{E}(\frac{1}{\sum_{i=1}^{n} T_i}) = n\mathbf{E}(\frac{2\lambda}{2\lambda\sum_{i=1}^{n} T_i}) = 2n\lambda\mathbf{E}(\frac{1}{Z}) = 2n\lambda\cdot(\frac{1}{2(n-1)}) = \lambda\frac{n}{n-1}$$

I.e. $\hat{\lambda}$ is <u>biased</u>.

We try the slightly modified estimator $\lambda^* = \frac{n-1}{n} \hat{\lambda} = \frac{n-1}{\sum_{i=1}^{n} T_i}$.

$$\mathbf{E}(\lambda^*) = \frac{n-1}{n} \mathbf{E}(\hat{\lambda}) = \frac{n-1}{n} \frac{n}{n-1} \lambda = \lambda$$

I.e. $\lambda^* = \frac{n-1}{\sum_{i=1}^{n} T_i}$ is an unbiased estimator for λ .

Using this estimator gives the estimate: $\lambda^* = \frac{11}{108.5} = 0.10$.

Generally we know that maximum likelihood estimators can be biased, but asymptotically (as $n \to \infty$) they are unbiased. We have found the MLE $\hat{\lambda}$ to be biased, but we see that

$$E(\hat{\lambda}) = \lambda \frac{n}{n-1} \to \lambda \text{ when } n \to \infty \text{ (since } \frac{n}{n-1} \to 1)$$

i.e. asymptotically the estimator is unbiased as it should be.

d)

Since

$$Z = 2\lambda \sum_{i=1}^{n} T_i = 2\lambda n \frac{\sum_{i=1}^{n} T_i}{n} = 2n \frac{\lambda}{\hat{\lambda}} \sim \chi_{2n}^2$$

we get

$$P(\chi_{1-\frac{\alpha}{2},2n}^2 < Z < \chi_{\frac{\alpha}{2},2n}^2) = 1 - \alpha$$

$$P(\chi_{1-\frac{\alpha}{2},2n}^2 < 2n\frac{\lambda}{\hat{\lambda}} < \chi_{\frac{\alpha}{2},2n}^2) = 1 - \alpha$$

$$P(\frac{\hat{\lambda}}{2n}\chi_{1-\frac{\alpha}{2},2n}^2 < \lambda < \frac{\hat{\lambda}}{2n}\chi_{\frac{\alpha}{2},2n}^2) = 1 - \alpha$$

I.e. a $(1 - \alpha)100\%$ confidence interval for λ becomes:

$$\underbrace{\left[\frac{\hat{\lambda}}{2n}\chi_{1-\frac{\alpha}{2},2n}^{2},\frac{\hat{\lambda}}{2n}\chi_{\frac{\alpha}{2},2n}^{2}\right]}$$

By inserting $\alpha = 0.05$ which gives $\chi^2_{1-\frac{\alpha}{2},2n} = \chi^2_{0.975,24} = 12.401$, $\chi^2_{\frac{\alpha}{2},2n} = \chi^2_{0.025,24} = 39.364$ and $\hat{\lambda} = \frac{n}{\sum_{i=1}^{n} T_i} = \frac{12}{108.5} = 0.111$ we get the 95% confidence interval:

$$\left[\frac{0.111}{2 \cdot 12} \cdot 12.401, \ \frac{0.111}{2 \cdot 12} \cdot 39.364\right] = \underline{\left[0.06, \ 0.18\right]}$$

Exercise 2:

a) If we first look at $Y_i = 2X_i/\beta$ we have from the overview of results on transformations in the collection of formulas that Y has a χ^2_2 -distribution.

Further, among the result on linear combinations we have one result which says that a sum of independent χ^2 -distributed variables is χ^2 -distributed with parameter ("degrees of freedom") equal to the sum of the parameters in the distribution of each single variable. I.e. in our case will $Z = \sum_{i=1}^{n} Y_i = \sum_{i=1}^{n} 2X_i/\beta$ be χ^2 -distributed with parameter $\sum_{i=1}^{n} 2 = 2n$, i.e. Z is χ^2_{2n} -distributed.

b) We have from the results on transformations that if X is gamma(α, β)-distributed then $Y = 2X/\beta$ is $\chi^2_{2\alpha}$ -distributed. Turned the other way around this means that if Y has a $\chi^2_{2\alpha}$ -distribution then $X = Y\beta/2$ has a gamma(α, β)-distribution.

Now, in our specific case we showed in a) that $Z = \sum_{i=1}^{n} 2X_i/\beta = 2(\sum_{i=1}^{n} X_i)/\beta = 2V/\beta$ has a χ^2_{2n} -distribution. It then follows that $V = Z\beta/2$ has a gamma-distribution with $\alpha = n$ and $\beta = \beta$.

We have here shown the result that a sum of independent identically exponentially distributed variables is gamma distributed with $\alpha = n$ and $\beta = \beta$.

Exercise 3:

a) The exact distribution of X will be a hypergeometric distributions with parameters N, k and n where N is the number of voters, k is the number of voters voting on Ap and n = 1000 is the number of voters which is asked in the opinion poll. Since $n \ll N$ we have that X will be approximately binomially distributed with parameters n = 1000 and p = k/N.

b) Since np(1-p) > 5 we can use the approximation to the normal distribution:

$$P(X > 300) = 1 - P(X \le 300) = 1 - P(Z \le \frac{300 + 0.5 - 1000 \cdot 0.275}{\sqrt{1000 \cdot 0.275 \cdot (1 - 0.275)}})$$
$$= 1 - P(Z \le 1.81) = 1 - 0.9649 = \underline{0.0351}$$

I.e. there is approximately a probability of 3.5% that the opinon poll will indicate that more than 30% would vote for Ap when the reality is that only 27.5% would vote for Ap.

c) In the binomial distribution we have $f(x;p) = \binom{n}{x}p^x(1-p)^{n-x}$, and since we have only made on binomial experiment (only one X, one poll) we get L(p;x) = f(x;p), i.e.

$$L(p;x) = \binom{n}{x} p^{x} (1-p)^{n-x}$$

$$l(p;x) = \ln L(p;x) = \ln\binom{n}{x} + x \ln p + (n-x) \ln (1-p)$$

$$\frac{\partial l(p;x)}{\partial p} = \frac{x}{p} - \frac{n-x}{1-p} = 0$$

$$\Rightarrow \quad (1-p)x - p(n-x) = 0$$

$$x - px - pn + px = 0 \quad \Rightarrow \quad \underbrace{\hat{p}} = \frac{X}{n}$$

Check that we have found a maximum:

$$\frac{\partial^2 l(p; x_1, \dots, x_n)}{\partial p^2} = -\frac{1}{p^2} x - \frac{1}{(1-p)^2} (n-x) < 0 \quad \text{i.e. maximum!}$$
$$E(\hat{p}) = E(\frac{X}{n}) = \frac{1}{n} E(X) = \frac{1}{n} np = \underline{p}$$
$$Var(\hat{p}) = \frac{1}{n^2} Var(X) = \frac{1}{n^2} np(1-p) = \frac{p(1-p)}{\underline{n}}$$

d) $X \sim bin(n, p)$. Confidence interval for p:

$$\begin{split} \hat{p} &= \frac{X}{n} \\ \frac{\hat{p} - \mathbf{E}(\hat{p})}{\sqrt{\operatorname{Var}(\hat{p})}} &= \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} \overset{CLT}{\approx} \mathbf{N}(0, 1) \end{split}$$

To simplify the calculations of the confidence interval we further use the approximation that when n is large $p(1-p) \approx \hat{p}(1-\hat{p})$, i.e. we use as starting point:

$$Z = \frac{\hat{p} - p}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \approx \mathcal{N}(0, 1)$$

$$P(-z_{\alpha/2} \le Z \le z_{\alpha/2}) \approx 1 - \alpha$$

$$P(-z_{\alpha/2} \le \frac{\hat{p} - p}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \le z_{\alpha/2}) \approx 1 - \alpha$$

$$\vdots$$

$$P(\hat{p} - z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le p \le \hat{p} + z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}) \approx 1 - \alpha$$

Observed: n = 1000 and x = 297 gives $\hat{p} = \frac{297}{1000} = 0.297$. $\alpha = 0.05 \implies z_{\alpha/2} = z_{0.025} = 1.96$.

Inserted this give the approximate 95% conf. int. for p:

$$[0.297 - 1.96\sqrt{\frac{0.297 \cdot 0.703}{1000}}, 0.297 + 1.96\sqrt{\frac{0.297 \cdot 0.703}{1000}}] = \underline{[0.269, 0.325]}$$