STA500 Introduction to Probability and Statistics 2, autumn 2018.

Solution exercise set 5

Exercise 1:

a)

$$
\begin{aligned}
L(\lambda) & =\prod_{i=1}^{n}\left(\lambda e^{-\lambda t_{i}}\right)=\lambda^{n} e^{-\lambda \sum_{i=1}^{n} t_{i}} \\
l(\lambda) & =\ln L\left(\lambda ; t_{1}, . . t_{n}\right)=\ln (\lambda)^{n}+\ln \left(e^{-\lambda \sum_{i=1}^{n} t_{i}}\right)=n \ln (\lambda)-\lambda \sum_{i=1}^{n} t_{i} \\
\frac{d l(\lambda)}{d \lambda} & =\frac{n}{\lambda}-\sum_{i=1}^{n} t_{i}=0 \quad \Rightarrow \lambda=\frac{n}{\sum_{i=1}^{n} t_{i}}
\end{aligned}
$$

I.e. the MLE is given as: $\hat{\lambda}=\underline{\underline{\sum_{i=1}^{n} T_{i}}} . \quad$ Estimate: $\hat{\lambda}=\frac{12}{108.5}=\underline{\underline{0.11}}$.
b) We start by considering the distribution of $Y=2 \lambda T_{i}$. From the result on transformations (see collection of formulas) we have for the exponential distribution that $2 X / \beta$ has a χ_{2}^{2}-distribution if X is exponentially distributed with parameter β. In the current setting we have that T_{i} is exponentially distributed with expectation $1 / \lambda$, i.e. $\beta=1 / \lambda$, and it thus follow that $Y=2 T_{i} / \beta=2 \lambda T_{i}$ is having a χ_{2}^{2}-distribution.

Further we have from results of linear combinations (collection of formulas) that since a sum of independent χ^{2}-distributed variables is χ^{2}-distributed with parameter ("degrees of freedom") equal to the sum of the parameters in the distribution of each variable, we will have that $Z=2 \lambda \sum_{i=1}^{n} T_{i}=\sum_{i=1}^{n} 2 \lambda T_{i}$ is having a $\underline{\underline{\chi_{2 n}^{2}} \text {-distribution (by being a sum }}$ of n indep. χ_{2}^{2}-distributed variables).
c)

$$
\mathrm{E}(\hat{\lambda})=n \mathrm{E}\left(\frac{1}{\sum_{i=1}^{n} T_{i}}\right)=n \mathrm{E}\left(\frac{2 \lambda}{2 \lambda \sum_{i=1}^{n} T_{i}}\right)=2 n \lambda \mathrm{E}\left(\frac{1}{Z}\right)=2 n \lambda \cdot\left(\frac{1}{2(n-1)}\right)=\lambda \frac{n}{n-1}
$$

I.e. $\hat{\lambda}$ is biased.

We try the slightly modified estimator $\lambda^{*}=\frac{n-1}{n} \hat{\lambda}=\frac{n-1}{\sum_{i=1}^{n} T_{i}}$.

$$
\mathrm{E}\left(\lambda^{*}\right)=\frac{n-1}{n} \mathrm{E}(\hat{\lambda})=\frac{n-1}{n} \frac{n}{n-1} \lambda=\lambda
$$

I.e. $\lambda^{*}=\frac{n-1}{\sum_{i=1}^{n} T_{i}}$ is an unbiased estimator for λ.

Using this estimator gives the estimate: $\lambda^{*}=\frac{11}{108.5}=0.10$.

Generally we know that maximum likelihood estimators can be biased, but asymptotically (as $n \rightarrow \infty$) they are unbiased. We have found the MLE $\hat{\lambda}$ to be biased, but we see that

$$
\mathrm{E}(\hat{\lambda})=\lambda \frac{n}{n-1} \rightarrow \lambda \text { when } n \rightarrow \infty \quad\left(\text { since } \frac{n}{n-1} \rightarrow 1\right)
$$

i.e. asymptotically the estimator is unbiased as it should be.
d)

Since

$$
Z=2 \lambda \sum_{i=1}^{n} T_{i}=2 \lambda n \frac{\sum_{i=1}^{n} T_{i}}{n}=2 n \frac{\lambda}{\hat{\lambda}} \sim \chi_{2 n}^{2}
$$

we get

$$
\begin{aligned}
P\left(\chi_{1-\frac{\alpha}{2}, 2 n}^{2}<Z<\chi_{\frac{\alpha}{2}, 2 n}^{2}\right) & =1-\alpha \\
P\left(\chi_{1-\frac{\alpha}{2}, 2 n}^{2}<2 n \frac{\lambda}{\hat{\lambda}}<\chi_{\frac{\alpha}{2}, 2 n}^{2}\right) & =1-\alpha \\
P\left(\frac{\hat{\lambda}}{2 n} \chi_{1-\frac{\alpha}{2}, 2 n}^{2}<\lambda<\frac{\hat{\lambda}}{2 n} \chi_{\frac{\alpha}{2}, 2 n}^{2}\right) & =1-\alpha
\end{aligned}
$$

I.e. a $(1-\alpha) 100 \%$ confidence interval for λ becomes:

$$
\underline{\left.\underline{\left[\frac{\hat{\lambda}}{2 n}\right.} \chi_{1-\frac{\alpha}{2}, 2 n}^{2}, \frac{\hat{\lambda}}{2 n} \chi_{\frac{\alpha}{2}, 2 n}^{2}\right]}
$$

By inserting $\alpha=0.05$ which gives $\chi_{1-\frac{\alpha}{2}, 2 n}^{2}=\chi_{0.975,24}^{2}=12.401, \chi_{\frac{\alpha}{2}, 2 n}^{2}=\chi_{0.025,24}^{2}=39.364$ and $\hat{\lambda}=\frac{n}{\sum_{i=1}^{n} T_{i}}=\frac{12}{108.5}=0.111$ we get the 95% confidence interval:

$$
\left[\frac{0.111}{2 \cdot 12} \cdot 12.401, \frac{0.111}{2 \cdot 12} \cdot 39.364\right]=\underline{\underline{[0.06,0.18]}}
$$

Exercise 2:

a) If we first look at $Y_{i}=2 X_{i} / \beta$ we have from the overview of results on transformations in the collection of formulas that Y has a χ_{2}^{2}-distribution.
Further, among the result on linear combinations we have one result which says that a sum of independent χ^{2}-distributed variables is χ^{2}-distributed with parameter ("degrees of freedom") equal to the sum of the parameters in the distribution of each single variable. I.e. in our case will $Z=\sum_{i=1}^{n} Y_{i}=\sum_{i=1}^{n} 2 X_{i} / \beta$ be χ^{2}-distributed with parameter $\sum_{i=1}^{n} 2=2 n$, i.e. Z is $\underline{\underline{\chi_{2 n}^{2}} \text {-distributed. }}$
b) We have from the results on transformations that if X is $\operatorname{gamma}(\alpha, \beta)$-distributed then $Y=2 X / \beta$ is $\chi_{2 \alpha}^{2}$-distributed. Turned the other way around this means that if Y has a $\chi_{2 \alpha}^{2}$-distribution then $X=Y \beta / 2$ has a gamma (α, β)-distribution.
Now, in our specific case we showed in a) that $Z=\sum_{i=1}^{n} 2 X_{i} / \beta=2\left(\sum_{i=1}^{n} X_{i}\right) / \beta=2 V / \beta$ has a $\chi_{2 n}^{2}$-distribution. It then follows that $V=Z \beta / 2$ has a gamma-distribution with $\alpha=n$ and $\beta=\beta$.
We have here shown the result that a sum of independent identically exponentially distributed variables is gamma distributed with $\alpha=n$ and $\beta=\beta$.

Exercise 3:

a) The exact distribution of X will be a hypergeometric distributions with parameters N, k and n where N is the number of voters, k is the number of voters voting on Ap and $n=1000$ is the number of voters which is asked in the opinion poll. Since $n \ll N$ we have that X will be approximately binomially distributed with parameters $n=1000$ and $p=k / N$.
b) Since $n p(1-p)>5$ we can use the approximation to the normal distribution:

$$
\begin{aligned}
P(X>300) & =1-P(X \leq 300)=1-P\left(Z \leq \frac{300+0.5-1000 \cdot 0.275}{\sqrt{1000 \cdot 0.275 \cdot(1-0.275)}}\right) \\
& =1-P(Z \leq 1.81)=1-0.9649=\underline{\underline{0.0351}}
\end{aligned}
$$

I.e. there is approximately a probability of 3.5% that the opinon poll will indicate that more than 30% would vote for Ap when the reality is that only 27.5% would vote for Ap.
c) In the binomial distribution we have $f(x ; p)=\binom{n}{x} p^{x}(1-p)^{n-x}$, and since we have only made on binomial experiment (only one X, one poll) we get $L(p ; x)=f(x ; p)$, i.e.

$$
\begin{aligned}
L(p ; x)= & \binom{n}{x} p^{x}(1-p)^{n-x} \\
l(p ; x)= & \ln L(p ; x)=\ln \binom{n}{x}+x \ln p+(n-x) \ln (1-p) \\
\frac{\partial l(p ; x)}{\partial p}= & \frac{x}{p}-\frac{n-x}{1-p}=0 \\
\Rightarrow & (1-p) x-p(n-x)=0 \\
& x-p x-p n+p x=0 \Rightarrow \hat{p}=\frac{X}{n}
\end{aligned}
$$

Check that we have found a maximum:

$$
\begin{aligned}
\frac{\partial^{2} l\left(p ; x_{1}, \ldots, x_{n}\right)}{\partial p^{2}} & =-\frac{1}{p^{2}} x-\frac{1}{(1-p)^{2}}(n-x)<0 \quad \text { i.e. maximum! } \\
\mathrm{E}(\hat{p}) & =\mathrm{E}\left(\frac{X}{n}\right)=\frac{1}{n} \mathrm{E}(X)=\frac{1}{n} n p=\underline{\underline{p}} \\
\operatorname{Var}(\hat{p}) & =\frac{1}{n^{2}} \operatorname{Var}(X)=\frac{1}{n^{2}} n p(1-p)=\underline{\underline{\frac{p(1-p)}{n}}}
\end{aligned}
$$

d) $X \sim \operatorname{bin}(n, p)$. Confidence interval for p :

$$
\begin{gathered}
\hat{p}=\frac{X}{n} \\
\frac{\hat{p}-\mathrm{E}(\hat{p})}{\sqrt{\operatorname{Var}(\hat{p})}}=\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}} \stackrel{C L T}{\approx} \mathrm{~N}(0,1)
\end{gathered}
$$

To simplify the calculations of the confidence interval we further use the approximation that when n is large $p(1-p) \approx \hat{p}(1-\hat{p})$, i.e. we use as starting point:

$$
\begin{gathered}
Z=\frac{\hat{p}-p}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \approx \mathrm{~N}(0,1) \\
P\left(-z_{\alpha / 2} \leq Z \leq z_{\alpha / 2}\right) \approx 1-\alpha \\
P\left(-z_{\alpha / 2} \leq \frac{\hat{p}-p}{\left.\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \leq z_{\alpha / 2}\right)} \begin{array}{c}
\\
\vdots \\
P\left(\hat{p}-z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \leq p \leq \hat{p}+z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)
\end{array} \begin{array}{l}
\\
\end{array}=1-\alpha\right.
\end{gathered}
$$

Observed: $n=1000$ and $x=297$ gives $\hat{p}=\frac{297}{1000}=0.297$.
$\alpha=0.05 \Rightarrow z_{\alpha / 2}=z_{0.025}=1.96$.
Inserted this give the approximate 95% conf. int. for p :

$$
\left[0.297-1.96 \sqrt{\frac{0.297 \cdot 0.703}{1000}}, 0.297+1.96 \sqrt{\frac{0.297 \cdot 0.703}{1000}}\right]=\underline{\underline{[0.269,0.325]}}
$$

