STA500 Introduction to Probability and Statistics 2, autumn 2018.

Solution exercise set 6

Exercises from the book:

9.13/9.15
Measurements of hardness: X7, ..., X, i.i.d. N(u,0?). Both g and o unknown.

Confidence interval for pu:
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Le. a (1 —a)100% confidence interval for p is given by: [X —t

P(X — ) = 1—«

a/2,nfl%a X + ta/2,n71 %]
Observed: n =12, 7 = 48.50, s =1.5. a=0.1 = t42,-1 = toos11 = 1.796. Inserted
this gives the 90% confidence interval for u:
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Measurements of hardness: X7,..., X, i.i.d. N(u,o?).
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Theorem 8.4/collection of formulas gives that: (n — 1)5—2 ~ X2

Confidence interval for o:
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Observed: n =12 and s = 1.5.
Further @ = 0.10 = x§g511 = 19.675 and x§ g5, = 4.575.

90% confidence interval for o: {\/ WLz \/ 111_'51%2] = [1.12,2.33].

Exercise 1 in MLE-note:
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Le MLE becomes [ = =iy X

b) For the exponential distribution we have E(X) = 8 and Var(X) = 3% and we thus
get:
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c) We start by finding the second derivative of the log-likelihood at B:
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The Wald confidence interval then becomes:

(8 = Zaj2\/ =1/ J(8), B + 2aj2\/ =1/ T (B)] = [6 = 2as2/ %/, B + 20y %/7]




d) With n = 5, 3 = 1274, 2 = 20025 = 1.96, X3 _ojp2n = Xiorsz0 = 3247 and
Xa/2.2n = Xo.025,10 = 20.483 we get the Wald interval

(=202 32 /1, 202\ 3% /0] = [1274-1.96/12742/5, 1274+1.96\/12742/5] = [157, 2391]

and the exact interval
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| = 622, 3924].

e) With n = 50, B = 1274, zpp25 = 1.96, X%—a/2,2n = X3,975,1oo = 72.222 and Xi/2,2n =
X6.025.100 = 129.561 we get the Wald interval

(6= 202\ B2/10, B+ 202\ B2/1] = [1274—1.961/12742/50, 1274+1.96,/12742/50] = [921, 1627]

and the exact interval
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— [983, 1716].

f) I point d) when we only have 5 observations there is a large difference between the
exact interval and the approximate Wald interval. In point e) when we have 50 observa-
tions there is far less difference between the intervals. The approximate interval is much
better in this case. Also notice that the intervals are much wider when we have only 5
observation than when we have 50 observations, reflecting that we have less information
in the first case.

Exercise 1:

a) Since i = g)? + %}7 is a linear combination of independent normally distributed
variables i will also be normally distributed. In 2 a) in exercise set 4 we found that
E(/1) = p and Var(f) = 0.000857. We thus get:
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Inserted @ = 0.05 = 242 = Zo.025 = 1.96 and fi = 2-6.12+ 1 - 6.05 = 6.11 this gives
that a 95% confidence interval for y is given by:

[6.11 — 1.961/0.000857, 6.11 + 1.961/0.000857] = [6.05, 6.17]

11—«

3



Exercise 2:

a) Since /i is a linear combination of the two independent normally distributed variables
X, and X, it follows that f also is normally distributed. Using the expectation and
variance calculated in point 3c) in exercise set 4 we get that
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With a = 0.05 we get that z,/2 = 20.025 = 1.96 and a 95% confidence interval is given by
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Inserted observed numbers we get 1 =
0.0345 which gives the confidence interval:

[4.220 — 1.96 - v/0.0345, 4.220 + 1.96 - v/0.0345] = [3.86, 4.58]

Exercise 3:
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where P(Xy > 4|X; > 4) > P(Xy > 4) if X; and X, are positively correlated, i.e.
p will increase if we have a positive correlation between the wave heights.




b)
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c) Comparing the pdf of the Rayleigh distribution to the pdf of the Weibull distribution
we see that the Rayleigh distribution is a special case of the Weibull distribution with
parameters & = 1/6 and [ = 2. From the transformation result (collection of formulas)
that if X is having a Weibull distribution with parameters o and 3 then Y = 2a.X? is
having a y3-distribution we here get that Z = 2(1/0)X? = 2X?/6 has a y3-distribution.

2X?2
Notice that § = 17 X2 = £yn 20 — O30 7 were we have from the above
n 2n =l 0 2n £~i=1

that the Z;s are x3-distributed. Further we have from the results on the expectation and
the variance in the y2-distribution that E(Z;) = 2 and Var(Z;) = 2-2 = 4 when Z; is
X3-distributed. We then get:
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of n X%—Adistributed variables is having a x3 -distribution (collection of formulas) we have
that 22¢ =Y | Z; ~ X3,
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Le. a (1 — «)100% confidence interval for 6 is give by:
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With n = 50, § = 1.047 and o = 0.05 which gives X%fa/2,2n = Xg.or5100 = 74.222 and
X?x/2,2n = Xb.025,100 = 129.561 we get:
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e) Starting from the interval in d) we get:
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Le. a (1 —a)100% confidence interval for p is give by:
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f) We start by finding the second derivative of the log-likelihood at 6:
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The Wald confidence interval then becomes:

[0 = Zayo\| =1/ J(0),0 + 2aj2\/ =1/ (0)] = [0 = 202V 02 /0,0 + 202\ 02 /]

and inserting zgg25 = 1.96, n = 50 and 0 = 1.047 we get:

[1.047 — 1.964/1.047%2/50, 1.047 + 1.96,/1.0472/50] = [0.76, 1. 34]

This is not very different from the exact interval in d), with n = 50 observations we have
enough data for this approximate interval to be quite good.



g)

Fy (y)

Since

we get

P(Y <y) = P(max(Xy,...X,,) <)
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Since P(Y > y.) = 1/100 then Fy(y.) = P(Y <y.) =1—1/100:
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h) If y. < 4 the probability of getting a wave higher than 4 meters is less than 0.01. The
operation starts if the measurements give basis to claim that y. < 4. In the previous
point we found the relation between y. and the parameter 8. We can use this relation
and the confidence interval for 6 from point d) to calculate a confidence interval for y..
To simplify the notation we insert m = 900 and get the relationship written as

Yo = J—eln (1— [1—1(1)0]1/900> = /-0 (-11.4) = V1140

The confidence interval then becomes:
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Inserting n = 50, § = 1.047 and o = 0.10 which gives X 2,20 = Xo.95.100 = 77-929 and
Xi/Q,Qn = Xg.057100 = 124.342 we get:

2-50-1.047 2-50-1.047
1147 14227 20— 7310, 3.91
[\/ 124.342 \/ 77.929 ] 310, 3.91)

We see that the upper limit of this interval is smaller than 4 and we can then claim that
Yo < 4. The operation can begin!



