
STA500 Introduction to Probability and Statistics 2, autumn 2018.

Solution exercise set 7

Note on Bayesian statistics, exercise 1

Remember that the true density in this case is

f(x) =
1√
2π

exp

(
−(x− 1)2

2

)
.

First expression: h(x) = exp
(
− (x−1)2

2

)
Clearly c = (2π)−1/2 will give us that ch(x) = f(x)

Second expression: h(x) = 2 exp
(
−1

2
x2 + x

)
Note that

h(x) = 2 exp

−1

2
x2 + x− 1

2︸ ︷︷ ︸
− (x−1)2

2

+
1

2

 ,

= 2 exp(1/2) exp

(
−(x− 1)2

2

)
,

thus c = 1/(2 exp(1/2)
√

2π) will make f(x) = ch(x) true.

Third expression: h(x) = 1
π

exp
(
− (x−1)2

2
+ 1
)

Clearly

h(x) =
1

π
exp(1) exp

(
−(x− 1)2

2

)
which gives us the normalizing constant c = π/(exp(1)

√
2π).
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Note on Bayesian statistics, exercise 2

With the exponential density written as f(t|θ) = θe−θt we get the likelihood

L(θ) =
n∏
i=1

f(ti|θ) =
n∏
i=1

θe−θti = θne−θ
∑n

i=1 ti

The prior density is given as p(θ) = 2e−2θ. We then get the following posterior distribu-

tion:

p(θ|data) = c · L(θ) · p(θ) = cθne−θ
∑n

i=1 ti2e−2θ = c2θ
n+1−1e−θ(

∑n
i=1 ti+2)

We see that this (as a function of θ) is on the same form as a gamma distribution with

parameters n+ 1 and 1/(
∑n

i=1 ti + 2). I.e. the distribution is a gamma distribution with

parameters n+ 1 and 1/(
∑n

i=1 ti + 2).
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Note on Bayesian statistics, exercise 3

First we observe that n = 10 and ȳ = 69/10 = 6.9, thus

λ̂Bayes =
a+ nȳ

n+ b−1
=

3 + 69

10 + 1/2
≈ 6.86,

and

λ̂MAP =
a+ nȳ − 1

n+ b−1
=

3 + 69− 1

10 + 1/2
≈ 6.76,

Note on Bayesian statistics, exercise 4

For the Bernulli(θ)-distribution we have that

L(θ) =
n∏
i=1

θyi(1− θ)1−yi = θ
∑

i yi(1− θ)n−
∑

i yi .

Thus the posterior kernel can be written as

p(θ|y) ∝ θ
∑

i yi(1− θ)n−
∑

i yiθa−1(1− θ)b−1,

= θ(a+
∑

i yi)−1(1− θ)(b+n−
∑

i yi)−1

which we recognize as beta(a+
∑n

i=1 yi, b+ n−
∑n

i=1) distribution.
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Exercise 2 in MLE-note:

a) The situations is characterised by:

• Independent trials - it is independent from plate to plate whether it is OK or not.

• We repeat the trials until success number k - we examine plates until k OK plates

are found.

• We record “success”/not “success” - whether a plate is OK or not.

• The probability of “success” is the same in all trials - same probability of OK for

each plate.

Then X = “number of plates we need to check to find k OK plates” is having a negative

binomial distribution with parameters k and p.

b) For the negative binomial distribution we have f(x) = ( x− 1
k − 1

)pk(1 − p)x−k, and we

then get:

L(p) =
n∏
i=1

f(xi) =
n∏
i=1

( xi − 1
k − 1

)pk(1− p)xi−k =

(
n∏
i=1

( xi − 1
k − 1

)

)
pnk(1− p)

∑n
i=1 xi−nk

l(p) = lnL(p) = ln

(
n∏
i=1

( xi − 1
k − 1

)

)
+ ln pnk + ln(1− p)

∑n
i=1 xi−nk

= ln(
n∏
i=1

( xi − 1
k − 1

)) + nk ln p+ (
n∑
i=1

xi − nk) ln(1− p)

∂l(p)

∂p
=

nk

p
−
∑n

i=1 xi − nk
1− p

= 0

nk(1− p)
p(1− p)

− p
∑n

i=1 xi − pnk
p(1− p)

= 0

nk(1− p)− p
n∑
i=1

xi + pnk = 0

nk − p
n∑
i=1

xi = 0

⇒ p =
nk∑n
i=1 xi

I.e MLE becomes p̂ = nk∑n
i=1Xi

= k
X̄
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c) We start by finding the second derivative of the log-likelihood at p̂:

J(p) =
∂2l(p)

∂p2
= −nk

p2
−
∑n

i=1 xi − nk
(1− p)2

J(p̂) = −nk
p̂2
−
∑n

i=1 xi − nk
(1− p̂)2

= −nk(1− p̂)2 + (
∑n

i=1 xi − nk)p̂2

p̂2(1− p̂)2

= −nk − 2nkp̂+ nkp̂2 +
∑n

i=1 xip̂
2 − nkp̂2

p̂2(1− p̂)2
= −nk − 2nkp̂+

∑n
i=1 xi(nk/

∑n
i=1 xi)p̂

p̂2(1− p̂)2

= − nk − nkp̂
p̂2(1− p̂)2

= − nk

p̂2(1− p̂)

The Wald confidence interval then becomes:

[p̂−zα/2
√
−1/J(p̂), p̂+zα/2

√
−1/J(p̂)] = [p̂− zα/2

√
p̂2(1− p̂)/nk, p̂+ zα/2

√
p̂2(1− p̂)/nk]

d) For the negative binomial distribution we have that µ = k/p and by the invariance

property of maximum likelihood estimators it follows that (since µ = k/p is a one-to-one

transformation from µ to p and k is known)

µ̂ =
k

p̂
=

k

k/X̄
= X̄

E(µ̂) = E(X̄) =
1

n

n∑
i=1

E(Xi) =
1

n

n∑
i=1

µ = µ

I.e. the estimator is unbiased.

e) Since
∑15

i=1 xi = 6 + 6 + 7 + 6 + 8 + 6 + 9 + 6 + 7 + 8 + 6 + 10 + 6 + 8 + 7 = 106 we get:

p̂ =
nk∑15
i=1 xi

=
15 · 6
106

= 0.85

µ̂ = x̄ = 106/15 = 7.07

With α = 0.05 we have zα/2 = z0.025 = 1.96 and we get

[p̂− zα/2
√
p̂2(1− p̂)/nk, p̂+ zα/2

√
p̂2(1− p̂)/nk]

= [0.85− 1.96
√

0.852(1− 0.85)/15 · 6, 0.85 + 1.96
√

0.852(1− 0.85)/15 · 6] = [0.78, 0.92]
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Exercise 1:

a) First remember that for the exponential distribution we have

F (t) = P (T < t) =

∫ t

0

λe−λudu = [−e−λu]t0 = 1− e−λt

Then:

P (T < 2|T > 1) =
P (T < 2 ∩ T > 1)

P (T > 1)
=
P (1 < T < 2)

1− P (T < 1)

=
F (2)− F (1)

1− F (1)
=

1− e−0.25·2 − (1− e−0.25·1)

1− (1− e−0.25·1)
= 0.22

Or we can do this simpler by using the fact that the exponential distribution is memoryless

(notice this only holds for the exponential distribution):

P (T < 2|T > 1)
memoryless

= P (T < 1) = 1− e−0.25·1 = 0.22

Since the times between failures are independent and exponentially distributed we have
a homogeneous Poisson process. The number of failures during two years is then Poisson

distributed with expectation λt = 0.25 · 2 = 0.5. I.e. if X=number of failures during two

years:

P (X > 1) = 1− P (X ≤ 1) = 1− P (X = 0)− P (X = 1) = 1− 0.50

0!
e−0.5 − 0.51

1!
e−0.5 = 0.09

b) Recall that the density of the exponential distribution with parameter λ is f(t|λ) =

λe−λt. The likelihood is then

L(λ) =
n∏
i=1

f(ti|λ) =
n∏
i=1

λe−λti = λne−λ
∑n

i=1 ti

ln(L(λ)) = ln(λn) + ln(e−λ
∑n

i=1 ti) = n ln(λ)− λ
n∑
i=1

ti

∂ ln(L(λ))

∂λ
=

n

λ
−

n∑
i=1

ti = 0 ⇒ λ̂ =
n∑n
i=1 Ti

Estimate: λ̂ = 4
36.4

= 0.11
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c) The interpretation of a posterior distribution is that it is a (subjective) probability

distribution which expresses our knowledge/uncertainty about a parameter (here λ) based

on prior knowledge and information in data.

The posterior distribution is here given by:

p(λ|data) = c · L(λ) · p(λ) = cλne−λ
∑n

i=1 ti
1

baΓ(a)
λa−1e−λ/b

= c2λ
n+a−1e−λ(

∑n
i=1 ti+1/b)

We see that this (as a function of λ) is on the same form as a gamma distribution with

parameters n+a and 1/(
∑n

i=1 ti+1/b). I.e. the distribution is a gamma distribution with

parameters n+ a and 1/(
∑n

i=1 ti + 1/b).

A common estimator is the expectation in the posterior distribution. In the gamma

distribution the expectation is the first parameter times the second parameter, i.e. we

get:

λ̂Bayes =
n+ a∑n

i=1 ti + 1/b

d) First we have to find the values of a and b. From the information in the text we

have that the expectation in the prior distribution is ab = 0.2 and variance ab2 = 0.004.

Inserting the first in the latter we get 0.2b = 0.004 which implies b = 0.02 and thus

a = 10. We then get:

λ̂Bayes =
4 + 10

36.4 + 1/0.02
= 0.16

We see that the Bayes estimate falls approximately midways between the MLE esti-

mate 0.11 and the prior estimate 0.20 (the prior expectation). This shows that in this

case is the prior information and the information in data approximately equally weighted.

7



e) The posterior distribution for λ is a gamma distribution with parameters a∗ = n+a =

4 + 10 = 14 and b∗ = 1/(
∑n

i=1 ti + 1/b)) = 1/(36.4 + 1/0.02) = 0.0116. To set up a Bayes

interval we then just need to find the quantiles in this distribution, i.e. to find γ1−α/2,a∗,b∗

and γα/2,a∗,b∗ such that

P (γ1−α/2,a∗,b∗ < λ < γα/2,a∗,b∗) = 1− α

This can be done by using the relationship between the gamma distribution and the

χ2-distribution given in the list of transformation results in the collection of formulas.

This result says that if X has a gamma(a, b)-distribution then Y = (2/b)X has a χ2
2a-

distribution. Thus:

P (
2

b∗
γ1−α/2,a∗,b∗ <

2λ

b∗
<

2

b∗
γα/2,a∗,b∗) = 1− α

P (
2

b∗
γ1−α/2,a∗,b∗ < Y <

2

b∗
γα/2,a∗,b∗) = 1− α

where Y is χ2
2a∗ I.e. γ1−α/2,a∗,b∗ = b∗

2
χ2

1−α/2,2a∗ and γα/2,a∗,b∗ = b∗

2
χ2
α/2,2a∗ . Thus the 90%

Bayes interval becomes:

(
γ1−α/2,a∗,b∗ , γα/2,a∗,b∗

)
=

(
b∗

2
χ2

1−α/2,2a∗ ,
b∗

2
χ2
α/2,2a∗

)
= (

0.0116

2
χ2

0.95,28,
0.0116

2
χ2

0.05,28)

= (
0.0116

2
· 16.928,

0.0116

2
· 41.337) = (0.10, 0.24)

Interpretation: There is a (subjective) 90% probability that the parameter λ is in this

interval.

8



Exercise 2:

a) To calculate a posterior distribution we need the likelihood and the prior distribution.

For observations X1, . . . , Xn from a normal distribution with known variance σ2 the

likelihood becomes:

L(µ) =
n∏
i=1

f(xi) =
n∏
i=1

1√
2πσ

exp

(
−(xi − µ)2

2σ2

)
=

1

(2π)n/2σn
exp

(
−

n∑
i=1

(xi − µ)2

2σ2

)

According to the information in the text, the prior density is:

p(µ) =
1√

2πσp
exp

(
−(µ− µp)2

2σ2
p

)
The posterior then becomes

p(µ|data) = c · L(µ) · p(µ)

= c · 1

(2π)n/2σn
exp

(
−

n∑
i=1

(xi − µ)2

2σ2

)
1√
2πσ

exp

(
−(µ− µp)2

2σ2
p

)

Below it is also shown how we from the above starting point get the posterior distribution

result given in the text (this was the optional part of the problem).

As a first step we notice the following property of the normal distribution density. The

general normal distribution density is given as

f(x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
=

1√
2πσ

exp

(
−x

2 − 2µx+ µ2

2σ2

)
= c·exp

(
−x

2 − 2µx

2σ2

)
where c is some constant. I.e. to identify the parameters of the normal distribution we

only need to know the part −x2−2µx
2σ2 of the exponent. The mean is given after the 2 in

the x-term and the variance after the 2 in the denominator.

Starting from the expression for the posterior given above (and note that this is a function

of µ) we get:

p(µ|data) = c · 1

(2π)n/2σn
exp

(
−

n∑
i=1

(xi − µ)2

2σ2

)
1√
2πσ

exp

(
−(µ− µp)2

2σ2
p

)
= c2 · exp

(
−
∑n

i=1 x
2
i − 2µ

∑n
i=1 xi +

∑n
i=1 µ

2

2σ2

)
exp

(
−
µ2 − 2µµp + µ2

p

2σ2
p

)
= c2 · exp

(
−

(
∑n

i=1 x
2
i − 2µ

∑n
i=1 xi + nµ2)σ2

p + (µ2 − 2µµp + µ2
p)σ

2

2σ2σ2
p

)
= c2 · exp

(
−

(nσ2
p + σ2)µ2 − 2(

∑n
i=1 xi · σ2

p + µpσ
2)µ+

∑n
i=1 x

2
i · σ2

p + µ2
pσ

2

2σ2σ2
p

)
= c3 · exp

(
−
µ2 − 2[(

∑n
i=1 xi · σ2

p + µpσ
2)/(nσ2

p + σ2)]µ

2σ2σ2
p/(nσ

2
p + σ2)

)
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This is now as a function of µ on the form of a normal distribution density, and if we

compare with our general normal density above we see that this posterior distribution is

a normal distribution with mean
∑n

i=1 xi·σ2
p+µpσ2

nσ2
p+σ2 and variance

σ2σ2
p

nσ2
p+σ2 as it should be.

b) The standard Bayes estimate is the mean in the posterior distribution, and we here

have:

µ̂Bayes =

∑n
i=1 xi · σ2

p + µpσ
2

nσ2
p + σ2

=

∑n
i=1 xi · σ2

p

nσ2
p + σ2

+
µpσ

2

nσ2
p + σ2

=
σ2
p

σ2
p + σ2/n

x̄+
σ2/n

σ2
p + σ2/n

µp

This shows that the Bayes estimate is a weighted average of the data average x̄ and the

prior mean µp. We see that the data is given most weight when σ2
p > σ2/n = Var(X̄)

and that the prior is given most weight when σ2
p < σ2/n = Var(X̄). I.e. the part with

smallest variance of the data average and the prior mean is given most weight.

With the given data and prior information the estimate becomes:

µ̂Bayes =
5 · 13.6 · 1.52 + 11 · 52

5 · 1.52 + 52
= 11.8

Since σ2
p = 1.52 = 2.25 < σ2/5 = 52/5 = 5 the prior information is given most weight in

this case. We see that 11.8 is closer to µp = 11 than to x̄ = 13.6.

c) The posterior distribution is a normal distribution with mean 11.8 and variance

σ2
pσ

2/(nσ2
p + σ2) = 1.52 · 52/(5 · 1.52 + 52) = 1.55. Thus we have the posterior prob-

ability:

P (−zα/2 <
µ− 11.8√

1.55
< zα/2) = 1− α

P (11.8− zα/2 ·
√

1.55 < µ < 11.8 + zα/2 ·
√

1.55) = 1− α

With α = 0.05 and thus zα/2 = 1.96 we get the 95% Bayesian interval:

(11.8− 1.96 ·
√

1.55, 11.8 + 1.96 ·
√

1.55) = (9.4, 14.2)

The 95% confidence interval for µ in the normal distribution when σ is known is

(x̄−1.96 ·σ/
√
n, x̄+ 1.96 ·σ/

√
n) = (13.6−1.96 ·5/

√
5, 13.6 + 1.96 ·5/

√
5) = (9.2, 18.0)

We see that the confidence interval is much wider which is natural. When we use less

information there is more uncertainty.
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d) A nice thing by using a Bayesian approach is that we can use the knowledge from the

experts based on other sources than data from the current situtation and combine this

knowledge with information from data. This gives us more precise estimates.

A potential danger by using the Bayesian approach is if the expert knowledge is wrong.

For instance if there has been some recent development in the pollution level which the

experts are not aware of (for instance a recent unknown discharge) then the (wrong) prior

information from the expert may drag the estimate in a wrong direction. This would in

paricular be problematic if a strong prior distribution is used (i.e. a prior distribution

with low variance reflecting that the experts think they have very precise knowledge).
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