
STA500 Introduction to Probability and Statistics 2, autumn 2018.

Solution exercise set 8

Note on Bayesian statistics, Exercise 5

First we write down the likelihood function

L(p) =
N∏
i=1

(
n

yi

)
θyi(1− θ)n−yi ∝ θ

∑
i yi(1− θ)Nn−

∑
i yi .

Thus the posterior kernel may be written as

p(θ|y) ∝ θa−1(1− θ)b−1θ
∑
i yi(1− θ)Nn−

∑
i yi

= θ(a+
∑
i yi)−1(1− θ)(b+Nn−

∑
i yi)−1,

which is easily recognized as a beta(a+
∑N

i=1 yi, b+Nn−
∑N

i=1 yi)-distribution.

6.51/6.49

In the Weibull distribution the density is:

f(t) = αβtβ−1e−αt
β

, t ≥ 0,

By substitution we get (observing that if we set u = αxβ we get du = αβxβ−1dx):

F (t) =

∫ t

0

αβxβ−1e−αx
β

dx =

∫ αtβ

0

e−udu = [−e−u]αtβ0 = −e−αtβ − (−1) = 1− e−αtβ

The failure rate (also called hazard rate) then becomes

z(t) =
f(t)

1− F (t)
=
αβtβ−1e−αt

β

e−αtβ
= αβtβ−1

With a failure rate of z(t) = 1/
√
t = t−1/2 = t1/2−1 we see that we have α = 2 and

β = 0.5. Then we get:

P (T > 4) = 1− P (T ≤ 4) = 1− F (4) = 1− (1− e−2·40.5) = 0.018

Exercise 1:

a) The density for the exponential distribution parameterised with the expectation β is

1



f(x) = 1
β
e−x/β. Then:

L(β) = =
n∏
i=1

1

β
e−xi/β =

1

βn
e−

∑n
i=1 xi/β

l(β) = lnL(β) = ln(1)− ln(β)n −
n∑
i=1

xi/β = −n ln(β)− 1

β

n∑
i=1

xi

∂l(β)

∂β
= −n

β
+

1

β2

n∑
i=1

xi = 0

nβ =
n∑
i=1

xi ⇒ β =
1

n

n∑
i=1

xi

I.e MLE becomes β̂ = 1
n

∑n
i=1 Xi.

The estimate becomes: β̂ = x̄ = (2.1 + 3.3 + 5.6 + 8.7 + 4.4 + 1.9)/6 = 26/6 = 4.33.

b) From the result on transformations (see collection of formulas) we have for the ex-

ponential distribution that 2X/β has a χ2
2-distribution if X is exponentially distributed

with parameter β.

Further we have that since a sum of independent χ2-distributed variables is χ2-distributed

with parameter (“degrees of freedom”) equal to the sum of the parameters in the distri-

bution of each variable (collection of formulas), we will have that Z =
∑n

i=1(2Xi/β) is

having a χ2
2n-distribution (by being a sum of n indep. χ2

2-distributed variables).

c)
Z =

n∑
i=1

(2Xi/β) = (2/β)
n∑
i=1

Xi = (2n/β)
1

n

n∑
i=1

Xi =
2n

β
β̂ ∼ χ2

2n

⇒ P (χ2
1−α/2,2n ≤

2n

β
β̂ ≤ χ2

α/2,2n) = 1− α

P

(
χ2

1−α/2,2n

2nβ̂
≤ 1

β
≤
χ2
α/2,2n

2nβ̂

)
= 1− α

P

(
2nβ̂

χ2
α/2,2n

≤ β ≤ 2nβ̂

χ2
1−α/2,2n

)
= 1− α

Observed data: n = 6, β̂ = 4.33. With α = 0.05 ⇒ χ2
0.025,12 = 23.337 and χ2

0.975,12 =

4.404. Give 95% conf. int. for β:[
2 · 6 · 4.33

23.337
,
2 · 6 · 4.33

4.404

]
= [2.2, 11.8]

The Wald confidence interval is an approximate confidence interval, where the approxi-

mation is better the more data we have. With only 6 observations we can not trust the

approximation to be good.
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d) With prior distribution p(β) = 1
baΓ(a)

β−a−1e−1/(βb) and the likelihood in a) we get the

posterior:

p(β|data) = c · L(β) · p(β)

= c
1

βn
e−

∑n
i=1 xi/β

1

baΓ(a)
β−a−1e−1/(βb)

= c2β
−n−a−1e−(

∑n
i=1 xi+1/b)/β

We see that this (as a function of β) is on the same form as an inverse gamma distribution

with parameters a∗ = n + a and b∗ = 1/(
∑n

i=1 xi + 1/b). I.e. the distribution is an

inverse gamma distribution with parameters n+ a and 1/(
∑n

i=1 xi + 1/b).

The standard Bayes estimate is the expectation in the posterior distribution. Using the

formula for the expectation in the inverse gamma distribution given in the text we get:

β̂Bayes =
1

b∗(a∗ − 1)
=

∑n
i=1 xi + 1/b

n+ a− 1
=

26 + 1/0.1

6 + 4− 1
= 4

e) Since the posterior distribution for β is an inverse gamma distribution with parameters

a∗ = n + a = 6 + 4 = 10 and b∗ = 1/(
∑n

i=1 xi + 1/b)) = 1/(26 + 1/0.1) = 0.0278 we

can use the result given in the text to find the Bayes interval. We would like to find the

quantiles in the inverse gamma distribution which are such that

P (ξ1−α/2,a∗,b∗ < β < ξα/2,a∗,b∗) = 1− α

By the transformation result in the text:

P (
1

ξ1−α/2,a∗,b∗
>

1

β
>

1

ξα/2,a∗,b∗
) = 1− α

P (
2

b∗ξ1−α/2,a∗,b∗
>

2

b∗β
>

2

b∗ξα/2,a∗,b∗
) = 1− α

P (
2

b∗ξα/2,a∗,b∗
< Z <

2

b∗ξ1−α/2,a∗,b∗
) = 1− α

where Z is χ2
2a∗ . I.e. 2

b∗ξα/2,a∗,b∗
= χ2

1−α/2,2a∗ which implies ξα/2,a∗,b∗ = 2
b∗χ2

1−α/2,2a∗
and

similar ξ1−α/2,a∗,b∗ = 2
b∗χ2

α/2,2a∗
. Thus the 95% Bayes interval becomes:

(
2

b∗χ2
α/2,2a∗

,
2

b∗χ2
1−α/2,2a∗

)
= (

2

0.0278χ2
0.025,20

,
2

0.0278χ2
0.975,20

)

= (
2

0.0278 · 34.170
,

2

0.0278 · 9.591
) = (2.1, 7.5)
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Exercise 2:

a) Y = number of rust attacks in t km ∼ Poisson(5t)

t = 1 : P (Y > 8) = 1− P (Y ≤ 8)
table
= 1− 0.9319 = 0.068

t = 0.5 : P (Y > 4) = 1− P (Y ≤ 4)
table
= 1− 0.8912 = 0.109

Let X be the number of pieces with more than 4 rust attacks. Then X ∼ B(10, 0.109)

and:

P (X ≥ 1) = 1− P (X = 0) = 1− ( 10
0

)0.1090(1− 0.109)10 = 0.684

b) The distance between points in a Poisson process is exponentially distributed with

parameter λ. Then we get (to keep things in the same scale we use that 100 meters is

0.1km):

P (T < t) =

∫ t

0

λe−λudu = [−e−λu]t0 = 1− e−λt

P (T < 0.1) = 1− e−5·0.1 = 1− e−0.5 = 0.393

P (T > 0.3|T > 0.1) = P (T > 0.2) = 1− P (T ≤ 0.2) = 1− (1− e−5·0.2) = e−1 = 0.368

In the last calculation we have used the memory-less property of the exponential distri-

bution which implies that P (T > 0.3|T > 0.1) = P (T > 0.2) (notice this is only the case

for the exponential distribution and the geometric distribution!) Alternatively we could

do this using the definition of conditional probability e.g. as follows (which is what we

have to do for this type of calculations for other distributions):

P (T > 0.3|T > 0.1) =
P (T > 0.3 ∩ T > 0.1)

P (T > 0.1)
=
P (T > 0.3)

P (T > 0.1)
=
e−5·0.3

e−5·0.1 = 0.368

The last question in this point is most easily solved by defining Y as the number of events

in the interval [0, 1] and calculate P (Y ≥ 8) (the event that it takes less than 1 km until

attack number 8 is the same as the event that at least 8 attacks occur during the 1 km).

We get:

P (Y ≥ 8) = 1− P (Y ≤ 7)
table
= 1− 0.8666 = 0.133

The other (and more challenging) way to solve this is to define S8 as the distance until

rust attack number 8. We know that the distribution of the distance until event number

8 in a Poisson process with λ = 5 is having a gamma distribution with parameters α = 8

and β = 1/5 (being the sum of 8 exponentially distributed variables with expectation

1/5). We then get that:

P (S8 < 1) =

∫ 1

0

1

βαΓ(α)
sα−1e−s/βds =

∫ 1

0

1

(1
5
)8Γ(8)

s8−1e−5sds

u=5s
=

∫ 5

0

58

Γ(8)
(
u

5
)8−1e−udu/5 =

∫ 5

0

u8−1

Γ(8)
e−udu

tableA.23/A.24
= 0.133

Table A.23 (A.24 in 8.edition) referred to above is on page 767 (791 in 8.ed) in Walpole.
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c) Yi ∼ Poisson(λti)

L(λ) =
n∏
i=1

f(yi;λ) =
n∏
i=1

(λti)
yi

yi!
e−λti =

∏n
i=1(λti)

yi∏n
i=1 yi!

e−λ
∑n
i=1 ti

ln(L(λ)) =
n∑
i=1

yi ln(λti)− ln(
n∏
i=1

yi!)− λ
n∑
i=1

ti

∂ lnL(λ)

∂λ
=

n∑
i=1

yi
λ
−

n∑
i=1

ti =
1

λ

n∑
i=1

yi −
n∑
i=1

ti = 0

⇒ λ̂ =

∑n
i=1 Yi∑n
i=1 ti

E(λ̂) =
1∑n
i=1 ti

n∑
i=1

E(Yi) =
1∑n
i=1 ti

n∑
i=1

λti = λ

Var(λ̂) = (
1∑n
i=1 ti

)2Var(
n∑
i=1

Yi)
indep.

= (
1∑n
i=1 ti

)2

n∑
i=1

Var(Yi)

= (
1∑n
i=1 ti

)2.
n∑
i=1

λti =
λ∑n
i=1 ti

d) We start by finding the second derivative of the log-likelihood at λ̂:

J(λ) =
∂2 lnL(λ)

∂λ2
= − 1

λ2

n∑
i=1

Yi

J(λ̂) = − 1

λ̂2

n∑
i=1

Yi = −
∑n

i=1 Yi(∑n
i=1 Yi∑n
i=1 ti

)2 =
1∑n
i=1 Yi

(
∑n
i=1 ti)

2

= −
∑n

i=1 ti

λ̂

The Wald confidence interval then becomes:

[λ̂− zα/2
√
−1/J(λ̂), λ̂+ zα/2

√
−1/J(λ̂)] = [λ̂− zα/2

√√√√λ̂/
n∑
i=1

ti, λ̂+ zα/2

√√√√λ̂/
n∑
i=1

ti]

With
∑8

i=1 yi = 30 and
∑8

i=1 ti = 1.5 we get λ̂ = 30/1.5 = 20. Also zα/2 = z0.05 = 1.645

and we get the interval:

[λ̂−zα/2

√√√√λ̂/
n∑
i=1

ti, λ̂+zα/2

√√√√λ̂/
n∑
i=1

ti] = [20−1.645
√

20/1.5, 20+1.645
√

20/1.5] = [14, 26]

Since the lower limit of this interval is less than 15 we can not from this interval claim

that λ > 15. However, the interval is quite wide and most of the values in the interval

are above 15 so it is probably wise to gather more data to get a more precise interval.

(Or, if we have information from other sources than data we can combine this with the

data information and calculate a Bayes interval. See the last problem on the exam fall

2010. )
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