Solution exercise set 9

Note on Markov processes, Exercise 1

We start by drawing the transition graph:

The Markov process has classes $\{0,1\}$ and $\{2,3\}$ where the former is transient and the latter is recurrent.

Note on Markov processes, Exercise 2

The process is a Markov chain as the process has a discrete state space $0,1,2$, and the distribution of $X_{t+1} \mid X_{t}, X_{t-1}, \ldots$ depends only on X_{t} and not on earlier values. The transition graph is given as:

The transition probability matrix is given as:

$$
P=\left(\begin{array}{ccc}
p & 1-p & 0 \\
0 & p & 1-p \\
1-p & 0 & p
\end{array}\right)
$$

As p is assumed to be <1, the chain is irreducible, i.e. one class. As p is assumed to be >0, the process is aperiodic (e.g. all of the diagonal elements of P are non-zero).
Note on Markov processes, Exercise 3
The transition graph is given as:

The transition probability matrix is given as

$$
P=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1-p & 0 & p & 0 \\
0 & 0 & 1-p & p \\
0 & 1-p & 0 & p
\end{array}\right)
$$

The process is irreducible (all states communicate) and aperiodic (e.g. state 3 has a diagonal element in P) when $0<p<1$.

Note on Markov processes, Exercise 4

The transition graph is something like

The process has three classes, and is therefore not irreducible.

- Class $\{0\}$ transient.
- Class $\{1,3\}$ recurrent, aperiodic
- Class $\{2,4\}$ recurrent, period 2

Note on Markov processes, Exercise 5

The process is irreducible as both states are accessible from the other one, and state 0 can be revisited in each of $1,2,3,4,5, \ldots$ transitions so the chain is aperiodic. The steady state probabilities are found by writing down the steady state equations

$$
\begin{aligned}
\pi_{0} & =p \pi_{0}+\pi_{1} \\
\pi_{1} & =(1-p) \pi_{0} \\
1 & =\pi_{0}+\pi_{1}
\end{aligned}
$$

Taking the latter of the former two and substitute for π_{1} in the normalisation equation, we arrive at

$$
1=(1+1-p) \pi_{0} \Rightarrow \pi_{0}=\frac{1}{2-p}
$$

and finally $\pi_{1}=(1-p) \pi_{0}=\frac{1-p}{2-p}$. We see that p controls how frequently state 1 is visited. For p close to 0 , the process spends roughly half the time in each state (and becomes periodic as $p \rightarrow 0$). On the other hand, for p close to 1 the process spends most of the time in state 0 (and state 0 becomes absorbing as $p \rightarrow 1$).

Exercise 1:

a) From the information given we have that $p_{11}=P\left(X_{n+1}=1 \mid X_{n}=1\right)=0.75$ and thus $p_{10}=1-0.75=0.25$. We also have that $p_{01}=P\left(X_{n+1}=1 \mid X_{n}=0\right)=0.35$ and thus $p_{00}=1-0.35=0.65$. The transition probability matrix then becomes:

$$
\begin{aligned}
P & =\underline{\left(\begin{array}{ll}
0.65 & 0.35 \\
0.25 & 0.75
\end{array}\right)} \\
P^{2} & =P \cdot P=\left(\begin{array}{cc}
0.65 \cdot 0.65+0.35 \cdot 0.25 & 0.65 \cdot 0.35+0.35 \cdot 0.75 \\
0.25 \cdot 0.65+0.75 \cdot 0.25 & 0.25 \cdot 0.35+0.75 \cdot 0.75
\end{array}\right)=\underline{\underline{\left(\begin{array}{cc}
0.51 & 0.49 \\
0.35 & 0.65
\end{array}\right)}}
\end{aligned}
$$

b) From the transition probability matrices we directly read:

$$
\begin{aligned}
& p_{10}=\underline{\underline{0.25}} \\
& p_{01}^{2}=\underline{\underline{0.49}} \\
& p_{10}^{2}=\underline{\underline{0.35}}
\end{aligned}
$$

c) Since X_{n} contains information about the weather on day n and day $n-1$ knowing X_{n-1}, X_{n-2}, \ldots does not add anything to our knowledge regarding the weather on the
next day $n+1$ since it is assumed in the text that the weather only depend on the weather the previous two days. Thus the probability of X_{n+1} only depends on X_{n} and not on X_{n-1}, X_{n-2}, \ldots i.e. the process is a Markov chain.
Further, from the information given in the text we have:

$$
\begin{aligned}
& p_{02}=P\left(X_{n+1}=2 \mid X_{n}=0\right)=P\left(X_{n+1}=s r \mid X_{n}=s s\right)=0.3 \\
& p_{12}=P\left(X_{n+1}=2 \mid X_{n}=1\right)=P\left(X_{n+1}=s r \mid X_{n}=r s\right)=0.5 \\
& p_{23}=P\left(X_{n+1}=3 \mid X_{n}=2\right)=P\left(X_{n+1}=r r \mid X_{n}=s r\right)=0.6 \\
& p_{33}=P\left(X_{n+1}=3 \mid X_{n}=3\right)=P\left(X_{n+1}=r r \mid X_{n}=r r\right)=0.8
\end{aligned}
$$

Since the weather the next day is either sun or rain there are always two possibilities for the next state. The probabilities given above are the probabilities for going to a state with rain on the next day. The probabilities of going to a state with sun is then:

$$
\begin{aligned}
& p_{00}=P\left(X_{n+1}=0 \mid X_{n}=0\right)=P\left(X_{n+1}=s s \mid X_{n}=s s\right)=1-0.3=0.7 \\
& p_{10}=P\left(X_{n+1}=0 \mid X_{n}=1\right)=P\left(X_{n+1}=s s \mid X_{n}=r s\right)=1-0.5=0.5 \\
& p_{21}=P\left(X_{n+1}=1 \mid X_{n}=2\right)=P\left(X_{n+1}=r s \mid X_{n}=s r\right)=1-0.6=0.4 \\
& p_{31}=P\left(X_{n+1}=1 \mid X_{n}=3\right)=P\left(X_{n+1}=r s \mid X_{n}=r r\right)=1-0.8=0.2
\end{aligned}
$$

The transition probability matrix then becomes as given in the exercise text.
d) From the transition probability matrices we directly read:

$$
\begin{aligned}
& p_{21}=P\left(X_{n+1}=r s \mid X_{n}=s r\right)=\underline{\underline{0.4}} \\
& p_{03}^{2}=P\left(X_{n+2}=r r \mid X_{n}=s s\right)=\underline{\underline{0.18}} \\
& p_{11}^{2}=P\left(X_{n+2}=r s \mid X_{n}=r s\right)=\underline{\underline{0.20}}
\end{aligned}
$$

Exercise 2:

a) We read directly from the transition probability matrix that $P\left(X_{1}=2 \mid X_{0}=0\right)=\underline{\underline{0.1}}$ and $P\left(X_{4}=1 \mid X_{3}=0, X_{2}=1\right)=P\left(X_{4}=1 \mid X_{3}=0\right)=\underline{\underline{0.2}}$. From the squared transition probability matrix we get the two step probabilities, and read out directly that $P\left(X_{2}=1 \mid X_{0}=1\right)=\underline{\underline{0.39}}$ and $P\left(X_{21}=1 \mid X_{19}=2\right)=\underline{\underline{0.42}}$
b) Steady state equations:

$$
\begin{aligned}
0.7 \pi_{0}+0.3 \pi_{1}+0.1 \pi_{2} & =\pi_{0} \\
0.2 \pi_{0}+0.5 \pi_{1}+0.4 \pi_{2} & =\pi_{1} \\
\pi_{0}+\pi_{1}+\pi_{2} & =1
\end{aligned}
$$

Solving this set of equations gives the solution $\pi_{0}=\underline{\underline{17}}, \pi_{1}=\frac{14}{\underline{40}}$, and $\pi_{2}=\underline{\underline{9}}$. As n gets large the starting point is forgotten and $P\left(X_{n}=0 \mid \overline{\overline{X_{0}}}=0\right) \rightarrow \pi_{0}=\frac{17}{\underline{\underline{40}}}$.

