
EXAM IN: STA500 INTRODUCTION TO PROBABILITY AND STATISTICS 2

DURATION: 4 HOURS DATE: February 17, 2016

PERMITTED AIDS: Approved simple calculator (HP30S, Casio FX82, TI-30,

Citizen SR-270X, Texas BA II Plus or HP17bII+ ).

THE EXAM CONSISTS OF 3 PROBLEMS ON 2 PAGES, 9 PAGES OF ENCLO-

SURES.

COURSE RESPONSIBLE: Tore Selland Kleppe PHONE: 51 83 17 17

Problem 1: A seismologist is monitoring the location of earth quakes in a 100 km
times 100 km square region in a mountain range. A location in the region is given in
(x, y) coordinates so that (0, 0), (0, 1), (1, 0) and (1, 1) defines the four corners of the
square region and distance is measured in unit 100 km. The location (X, Y ) of each
earth quake is assumed to be a bivariate random variable with probability density
function given by

f(x, y) =
200

151

(

1− (x− 0.3)2 −
(y − 0.9)2

2

)

, 0 ≤ x, y ≤ 1.

a) Show that the marginal distribution of the x-coordinate has the density
f(x) = 527

453
− 200

151
(x− 0.3)2, 0 ≤ x ≤ 1.

The seismologist has a chain of seismometers running in the the x-direction that can
measure exactly the x-coordinate of any given earthquake. Suppose an earth quake
occurred with x-coordinate equal to 0.3.

b) Find the density of Y |X = 0.3.
Are X and Y independent?

Problem 2: Consider the three state continuous time Markov chain {X(t), t ≥ 0}
specified by the transition graph:

state 1

state 2

state 3

λ1 λ2

γ

where the specific transition rates are 0 < λ1, λ2, γ < ∞.

a) Why does this model admit unique steady state probabilities?
Find the steady state probabilities.

1



Assume that X(0) = 1.

b) What is the expected time until the chain first visits state 3?
At what time τ(u) is there a probability u that the chain has left state 1 for the
first time?
Suppose now that it is known that the chain remained in state 1 until time 1.
What is the expected time after time 1 the chain will remain in state 1?

Problem 3: Let X1, X2, . . . , Xn be independent data from a distribution with prob-
ability density function

f(x) =

√
τ

2π
exp

(

−
τ

2
x2
)

, −∞ < x < ∞,

i.e. Xi has a normal distribution with E(Xi) = 0 and V ar(Xi) =
1
τ
. The parameter

τ is known as the precision parameter.

a) Write down the log-likelihood function for the parameter τ based on data
X1, X2, . . . , Xn.
Show that τ̂ = n∑n

i=1
X2

i
is the maximum likelihood estimator for τ .

Comment on the maximum likelihood estimator in light of the invariance prin-
ciple.
Find a 95% Wald approximate confidence interval for τ .

b) Argue for why h(τ̂ , τ) = nτ
τ̂

has a χ2
n distribution.

c) Find an exact (1− α)100% confidence interval for τ .
What is the interpretation of a (1− α)100% confidence interval?

Now consider Bayesian estimation of τ (in the same situation as above) using a
gamma(a, b) prior.

d) Find the posterior distribution of τ .
Find the Bayes estimator τ̂Bayes.

e) Find a (1− α)100% credible interval (Bayes interval) for τ .
Compare the interpretation of the credible interval to that of the confidence
interval found in c).

Suppose now that we have n = 6 observations x1, x2, . . . , x6 and that
∑n

i=1 x
2
i =

4.451109.

f) Compute the Wald and exact confidence intervals based on the data mentioned
above with α = 0.05.
Compute the credible interval based on the data mentioned above, a
gamma(10,0.1) prior and α = 0.05.
Comment on the differences between the different intervals.
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Solutions

1 a)
To find the x-marginal, we integrate the joint density wrt y, which h,i.e

f(x) =

∫

f(x, y)dy = (200/151)
[
(17/60) +

(
119/200− (x− 3/10)2

)]

= 527/453− (200/151)(x− 3/10)2.

1 b)
The conditional density is given in terms of the joint and marginal-x densities:

f(y|x) = fX,Y (x, y)/fX(x) =

200
151

(

1− (x− 0.3)2 − (y−0.9)2

2

)

527/453− (200/151)(x− 3/10)2.

Specifically conditioning on X = 0.3 gives us that

f(y|x = 0.3) =

200
151

(

1− (y−0.9)2

2

)

527/453.
= 600/527− (300/527)(y − 0.9)2.

The two variables are dependent as f(y|x) depends on x.
2 a)
The model is Irreducible as all states communicate and Positive recurrent as each
state is revisited with probability 1 in finite expected time.
The steady state probabilities solve the equations

γπ3 − λ1π1 = 0

λ1π1 − λ2π2 = 0

λ2π2 − γπ3 = 0

π1 + π2 + π3 = 1

where one of the upper three is superfluous. Using the upper two an the latter we
obtain that

π3 = (λ1/γ)π1

π2 = (λ1/λ2)π1

1 = (1 + (λ1/λ2) + (λ1/γ))π1

⇓

π1 =
1

1 + (λ1/λ2) + (λ1/γ)

=
γλ2

γλ2 + γλ1 + λ1λ2

Then plugging into the first two equations:

π2 = (λ1/λ2)π1 =
γλ1

γλ2 + γλ1 + λ1λ2

π3 = (λ1/γ)π1 =
λ1λ2

γλ2 + γλ1 + λ1λ2
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2 b)
The time until the chain first enters state 3 is distributed as the sum of indepen-
dent exponential(1/λ1) and exponential(1/λ2) random variables, and therefore the
expected time until the chain enters state 3 is 1/λ1 + 1/λ2.

The time T until the chain jumps from state 1 has an exponential(1/λ1) distribution,
and therefore we have that FT (t) = 1 − exp(−tλ1). Now, we wish to solve for t so
that

P (T > τ) = 1− FT (τ) = exp(−τλ1) = u

which gives us τ(u) = − log(u)/λ1.
The answer to the last question is still 1/λ1 due to the memoryless-property of the
exponential distribution.
3 a)
Likelihood

L(τ) =
n∏

i=1

√
τ

2π
exp

(

−
τ

2
X2

i

)

=
( τ

2π

)n
2

exp

(

−
τ

2

n∑

i=1

X2
i

)

.

Log-likelihood

l(τ) =
n

2
log(τ)−

n

2
log(2π)−

τ

2

n∑

i=1

X2
i .

First derivative (score)

∂

∂τ
l(τ) =

n

2τ
−

1

2

n∑

i=1

X2
i .

Critical point and MLE:

0 =
n

2τ̂
−

1

2

n∑

i=1

X2
i

⇓

τ̂ =
n

∑n
i=1 X

2
i

.

Second derivative at (candidate) MLE:

∂2

∂τ 2
l(τ̂) = −

n

2τ̂ 2
= −

(
∑n

i=1 X
2
i )

2

2n
< 0

I.e. the second derivative at the MLE is negative, and therefore τ̂ is a maximizer.
This estimator is the inverse of the MLE for σ2 in a N(0, σ2) population and therefore
in line with the invariance principle.
The 95 % Wald interval is given as

[

τ̂ ∓ 1.96

√

2τ̂ 2

n

]

=

[

τ̂ ∓ 1.96

√

2n

(
∑n

i=1 X
2
i )

2

]

.

3 b)
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Let σ = τ−1/2 be the standard deviation of Xi. Then observe that we can rewrite h
as

h(τ̂ , τ) =
nτ

τ̂
=

nτ
∑n

i=1 X
2
i

n
=

1

σ2

n∑

i=1

X2
i =

n∑

i=1







Xi

σ
︸︷︷︸

∼N(0,1)







2

︸ ︷︷ ︸

∼χ2

1

.

Thus h(τ̂ , τ) is a sum of n independent (as the Xis are independent) χ
2
1 variables and

must therefore have a χ2
n-distribution.

3 c)
Using the known distribution of h(τ̂ , τ), we have that

P
(

χ2
1−α/2,n <

nτ

τ̂
< χ2

α/2,n

)

= 1− α

⇓

P

(

χ2
1−α/2,n

τ̂

n
< τ < χ2

α/2,n

τ̂

n

)

= 1− α

I.e. the confidence interval is given by
[

χ2
1−α/2,n

τ̂

n
, χ2

α/2,n

τ̂

n

]

.

The interpretation is that the confidence interval covers the true parameter in a frac-
tion (1− α) of repeated experiments. I.e. it is not meaningful to talk about e.g. the
probability of the true parameter being in the interval is (1−α) in this non-Bayesian
setting.

3 d)
The likelihood function was found in 3 a) and we therefore have that the posterior
kernel can be written as

p(τ |data) ∝
( τ

2π

)n
2

exp

(

−
τ

2

n∑

i=1

X2
i

)

︸ ︷︷ ︸

L(τ)

τa−1 exp
(

−
τ

b

)

︸ ︷︷ ︸

∝p(τ)

,

∝ τn/2+a−1 exp

(

−τ

[

1

2

n∑

i=1

X2
i +

1

b

])

The posterior is recognized to be a gamma(a∗, b∗) distribution where

a∗ =
n

2
+ a,

b∗ =

[

1

2

n∑

i=1

X2
i +

1

b

]
−1

.

Due to the gamma-distributed posterior, the Bayes estimator is given as

τ̂Bayes = a∗b∗ =
n
2
+ a

1
2

∑n
i=1 X

2
i +

1
b

.
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3 e)
The credible interval is found using the relationship between the gamma and χ2

distributions:

P
(
γ1−α/2,a∗,b∗ < τ < γ1−α/2,a∗,b∗

)
= 1− α,

⇓

P








2

b∗
γ1−α/2,a∗,b∗

︸ ︷︷ ︸

=χ2

1−α/2,2a∗

<
2

b∗
τ

︸︷︷︸

∼χ2

2a∗

<
2

b∗
γα/2,a∗,b∗

︸ ︷︷ ︸

=χ2

α/2,2a∗








= 1− α.

Thus γ1−α/2,a∗,b∗ = b∗χ2
1−α/2,2a∗/2 and γα/2,a∗,b∗ = b∗χ2

α/2,2a∗/2 and the credible interval
can be written as [

b∗χ2
1−α/2,2a∗

2
,
b∗χ2

α/2,2a∗

2

]

.

3 f)
Maximum likelihood estimator:

τ̂ =
n

∑n
i=1 x

2
i

= 1.347979

Wald interval: [

τ̂ ∓ 1.96

√

2τ̂ 2

n

]

= [−0.1774028, 2.8733601].

Exact confidence interval:
[

χ2
1−α/2,n

τ̂

n
, χ2

α/2,n

τ̂

n

]

= [0.2779856, 3.2462416].

Credible interval (a∗ = 13, b∗ = 0.08179588)

[

b∗χ2
1−α/2,2a∗

2
,
b∗χ2

α/2,2a∗

2

]

= [0.5661872, 1.7145713]

It is seen that the Wald interval contains negative values, which is undesirable and
show that it is a rather poor approximation for small n.
Comparing the exact confidence interval and the credible interval we see that the
credible interval is much narrower. This is a consequence of the fact that both data
and prior information is used for the credible interval, whereas only data is used for
the confidence interval. In particular, the prior more informative than the data, as
the posterior standard deviation is only approximately 7 % smaller than the prior
standard deviation.
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