
EXAM IN: STA500 INTRODUCTION TO PROBABILITY AND STATISTICS 2

DURATION: 4 HOURS DATE: Feburary 15, 2017

PERMITTED AIDS: Approved simple calculator (HP30S, Casio FX82, TI-30,

Citizen SR-270X, Texas BA II Plus or HP17bII+ ).

One yellow A4 size sheet with handwritten notes is allowed.

Both sides of the sheet can be used.

THE EXAM CONSISTS OF 7 PROBLEMS ON 3 PAGES, 9 PAGES OF ENCLO-

SURES.

COURSE RESPONSIBLE: Jörn Schulz PHONE:

Problem 1: Let X1, . . . , Xn be independent and identically distributed random vari-
ables with density

f(x) =

{

4
θ
x3 exp(−1

θ
x4), x > 0

0, x ≤ 0
(θ > 0).

a) Show that the MLE for θ becomes θ̂ = 1
n

∑n
i=1 x

4
j . Show that θ̂ is a maximum.

b) Find the cumulative distribution function for Xi.
Moreover, show that X4

i ∼ Exp(θ).
Is θ̂ an unbiased estimator of θ?

Problem 2: Suppose we observe birds of prey. We assume that the waiting time (in
hours) until we observe the next bird is independent exponentially distributed with
unknown mean parameter β > 0. We have observed a sample of size n = 10, with
waiting times

2.53, , 1.73, 3.99, 0.09, 0.17, 0.95, 0.94, 0.44, 8.18, 0.09.

The ML estimator for β is given by β̂ = 1
n

∑n
i=1 xi and J(β̂) = − n

β̂2
(don’t show

that).
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a) Derive an exact 95% confidence interval for β.
Construct a 95%-Wald-confidence interval for β.
Suppose we observe another sample of size n = 20 with exactly the same value
for β̂ as before, i.e., β̂ is the same for both sample sizes. What is the 95%-Wald-
confidence interval in this case?
Compare the three intervals and comment!

Problem 3: Assume that you want to investigate the proportion θ of defective items
manufactured at a production line. Your colleague takes a random sample of 30
independent items. Three were defective in the sample. Let X be the number of
defective items.

a) What is the distribution of X? Explain your answer!
Assume a Beta distribution for the prior with known parameters α and β, i.e.,
θ ∼ Beta(α, β) with prior-density p(θ) = 1

B(α,β)
θα−1(1 − θ)β−1. Compute the

posterior of θ. What kind of distribution has the posterior?
What is the Bayes estimator for θ?

Suppose your colleague now tells you that he did not decide on the sample size before
the sampling was performed. His sampling plan was to keep on sampling items until
he had found three defective ones. It just happen that the 30′th item was the third
one to be defective.

b) Redo the posterior calculation, this time under the new sampling scheme.
Discuss the result in comparison with a).

Problem 4: Consider the Markov chain model {Xn, n = 0, 1, . . . } with state space
S = {0, 1, 2} and transition probability matrix

P =





1− α α 0
α
2

1− α α
2

0 α 1− α



 , 0 < α ≤ 1.

a) What is P (X4 = 1|X3 = 1, X1 = 0)
For which α ∈ (0, 1] is Xn a-periodic? Explain your answer!
For which α ∈ (0, 1] is Xn periodic and what is the period? Explain your answer!

b) When do we have steady state probabilities? Why? Calculate the steady state
probabilities!
How do we interpret the matrix P 2?
Given α = 1, calculate p211 and P (X6 = 0, X4 = 0|X3 = 1, X1 = 2).
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Problem 5: Let X1, . . . , Xn, n ∈ N, independent and identically distributed random
variables with E(Xi) = µ ∈ R and V ar(Xi) = σ2 > 0.

a) Show that

µ̂ =
1

n

n
∑

i=1

Xi and µ̃ =

n
∑

i=1

wiXi, wi =
2i

n(n+ 1)

are unbiased estimators for µ. Which one is the better estimator? Proof your
answer.

Problem 6: An auto manufacturer has certain requirements for the automobiles
that it manufactures. The gasoline consumption is normally distributed with mean
µ = 5 and standard deviation σ = 4

5
in l/100km (liters per 100km) as the cars come

off the assembly line. The manufacturer then tests the gasoline consumption and
re-manufactures any unit that tests above 6 l/100km.

a) What fraction of the manufacturer’s automobiles are likely to be re-
manufactured?
If the company improves quality control, they can reduce the value of σ. What
value of σ will ensure that not more than 1 percent of the automobiles has to be
re-manufactured?

Problem 7: A small petrol filling station has two pumps that can serve two cars at
the same time independent of each other. In addition, there is space for three further
waiting spaces. Vehicles have to pass by the petrol station if all waiting spaces are
occupied. Vehicles arrive at random (a Poisson Process) with rate λ > 0, and the
service times (in minutes) are exponential distributed with rate γ > 0.

a) If the number of vehicles at the station is used to represent the state of the
system, write down a state transition graph for the system including the rates.
Show that in steady state, the probability that there are k vehicles at the station
is given by

π0 =
1− ρ

1 + ρ− 2ρ6
and πk = 2ρkπ0, k = 1, 2, 3, 4, 5

where ρ = λ
2γ
.

Given an arrival rate of λ = 0.4 and an expected service time of 4 minutes, find
the mean number of vehicles at the station.
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Solutions

1.a
The likelihood is given by

L(θ) =
n
∏

i=1

f(θ; xi) =
n
∏

i=1

4

θ
x3
i exp(−

1

θ
x4
i )

=
4n

θn

n
∏

i=1

x3
i exp(−

1

θ
x4
i )

=
4n

θn
exp

(

−
1

θ

n
∑

i=1

x4
i

)

n
∏

i=1

x3
i

and the log-likelihood by

l(θ) = lnL(θ) = n ln

(

4

θ

)

−
1

θ

n
∑

i=1

x4
i +

n
∑

i=1

ln(x3
i )

= n ln(4)− n ln(θ)−
1

θ

n
∑

i=1

x4
i + 3

n
∑

i=1

ln(xi).

This leads to

d

dθ
l(θ) = −

n

θ
+

1

θ2

n
∑

i=1

x4
i = −

n

θ2

(

θ +
1

n

n
∑

i=1

x4
i

)

= 0

⇔ θ̂ =
1

n

n
∑

i=1

x4
i .

θ̂ is a maximum because

J(θ) =
d2

dθ2
l(λ) =

n

θ2
−

2

θ3

n
∑

i=1

x4
i =

n

θ2
−

2

θ3
nθ̂

and

J(θ̂) =
n

θ̂2
−

2

θ̂3
nθ̂ =

1

θ̂2

(

n−
2

θ̂
nθ̂

)

= −
n

θ̂2
< 0.

Thus, θ̂ is a maximizer and therewith θ̂ is a MLE.

1.b
For z > 0 we have

FX(z) = P (X ≤ z) =

∫ z

0

4

θ
x3 exp

(

−
1

θ
x4

)

dx =

[

− exp

(

−
1

θ
x4

)]z

0

= 1− exp

(

−
1

θ
z4
)
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and therefore

FX4(z) = P (X4 ≤ z) = P (X ≤ z
1

4 ) = 1− exp

(

−
1

θ
z

)

.

This is the cumulative distribution function of the Exponential distribution with
parameter β = θ, i.e., X4 ∼ Exp(θ). The estimator θ̂ is unbiased because of

E(θ̂) = E

(

1

n

n
∑

i=1

X4
i

)

=
1

n

n
∑

i=1

E(X4
i ) = E(X4

i ) = θ.

2.a
The density of the exponential function parameterized by β is f(x) = 1

β
exp(− 1

β
x), x ≥

0. The ML estimator of β is given by β̂ = x̄ = 1.911 given the 10 observations.
The exact CI can be calculated from the transformation formulas. We have for the
exponential distribution that 2Xi/β has a χ2

2-distribution if Xi is exponential dis-
tributed with parameter β. Furthermore, we have

∑ 2Xi

β
=

2n

β

1

n

∑

Xi =
2n

β
β̂ ∼ χ2

2n.

Therefore, the CI is given by

P (χ2
1−α/2,2n ≤

2n

β
β̂ ≤ χ2

α/2,2n) = 1− α

⇔ P

(

χ2
1−α/2,2n

2nβ̂
≤

1

β
≤

χ2
α/2,2n

2nβ̂

)

= 1− α

⇔

(

2nβ̂

χ2
α/2,2n

≤ β ≤
2nβ̂

χ2
1−α/2,2n

)

= 1− α.

Given n = 10, β̂ = x̄ = 1.911, α = 0.05, we have the exact CI

[

2 · 10 · 1.911

34.170
,
2 · 10 · 1.911

9.591

]

= [1.118, 3.985] .

We know that J(θ̂) = − n

β̂2
which leads to the Wald interval

(

β̂ ± zα/2

√

−
1

J(β̂)

)

= (1.911± 1.96 · 0.604) = (0.727, 3.094).

In case of n = 20 and identical x̄, the Wald-interval is

(1.911± 1.96 · 0.427) = (1.074, 2.748).
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We observe that the exact CI is larger than the Wald-CI for n = 10. This might be
surprising but can be explained by the fact that we were lucky with our sample which
led to a relative small estimated variance. However, we see that we underestimate
the the exact CI by the Wald-CI. Thus, we conclude that we need a larger sample
size. Moreover, as expected, we see that the 2nd Wald-CI for n = 20 is smaller than
for n = 10.

3.a
All 30 trials are independent. We have either no success or success (defective or non-
defective), the probability of a defective item is the same in each trial, and we have
a specified number of trials, namely n = 30. Thus, the data is binomial distributed
and the likelihood is

L(x|θ) =

(

n

x

)

θx(1− θ)n−x ∝ θx(1− θ)n−x

and the prior
p(θ) ∝ θα−1(1− θ)β−1.

The posterior density is therewith

p(θ|x) ∝ θx(1− θ)n−xθα−1(1− θ)β−1 = θ(x+α)−1(1− θ)(n−x+β)−1,

which we recognize as being proportional to Beta density, i.e., the posterior distribu-
tion is Beta(x + α, n− x+ β) = Beta(3 + α, 27 + β).

The Bayes estimator is θ̂Bayes =
3+α

30+α+β
.

3.b
Now, we have repeated trials until k = 3 defectives with the 30′th item was the third
one to be defective. Therefore, the likelihood function is now given by the negative
binomial distribution, i.e.,

L(x|θ) =

(

x− 1

k − 1

)

θk(1− θ)x−k ∝ θk(1− θ)x−k

with k = 3 and x = 30.

Assume that you want to investigate the proportion θ of defective items manufactured
at a production line. Your colleague takes a random sample of 30 items. Three were
defective in the sample. Let X be the number of defective items. The posterior
density is therewith

p(θ|x) ∝ θk(1− θ)x−kθα−1(1− θ)β−1 = θ(k+α)−1(1− θ)(x−k+β)−1,

i.e., we have again Beta(3 + α, 27 + β) distribution as a posterior distribution. In
Bayesian analysis we are looking at the posterior, where the data is fixed. Therefore,
we get the same posterior as in a) even if a different variable is stochastic in the
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likelihood. It is only the shape of the likelihood that matter for inference.

4.a
P (X4 = 1|X3 = 1, X1 = 0) = P (X4 = 1|X3 = 1) = p11 = 1− α.

It is given that 0 < α ≤ 1. For α = 1, the transition probability matrix becomes

P =





0 1 0
1
2

0 1
2

0 1 0





and the transition graph

1 2 3

and therefore the Markov chain Xn is periodic with period 2. For example, if the
Markov chain is in state 1, than we are in two steps in state 1 again.

In case of α ∈ (0, 1), i.e. 0 < α < 1, we have that (1 − α) > 0, α > 0 and α
2
> 0.

Thus, except p02 = 0 and p20 = 0 all elements of P have a positive probability,

P =





1− α α 0
α
2

1− α α
2

0 α 1− α



 .

Thus, the transition matrix can be written by

1 2 3

Therewith, the Markov chain Xn is aperiodic for all α ∈ (0, 1).

4.b
In case of 0 < α < 1, we have steady state probabilities because the Markov chain
is irreducible, aperiodic and has a finite state space. The steady probabilities for
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0 < α < 1 are

Π = P TΠ

⇔





π0

π1

π2



 =





1− α 1
2
α 0

α 1− α α
0 1

2
α 1− α









π0

π1

π2





⇔ π0 = (1− α)π0 +
1

2
απ1

π2 =
1

2
απ1 + (1− α)π2

plus the condition π1 = 1− π0 − π2

⇔ π0 = π0 − (1− α)π0 = απ0 =
1

2
απ1 ⇔ π0 =

1

2
π1

π2 = π2 − (1− α)π2 = απ2 =
1

2
απ1 ⇔ π2 =

1

2
π1

π1 = 1−
1

2
π1 −

1

2
π1 ⇔ 2π1 = 1 ⇔ π1 =

1

2
.

Therefore, the steady state probabilities are




π0

π1

π2



 =





1
4
1
2
1
4



 =





0.25
0.5
0.25



 .

The matrix P 2 contains all transition probabilities of the homogeneous Markov chain
{Xn, n = 0, 1, . . . } for two steps transitions. More precise, each entry p2ij =
P (Xn+2 = j | Xn = i) define the conditional probability that the Markov chain
will be in state j at time n + 2 if the chain is in state i at time n. Given α = 1, the
matrix P 2 is

P 2 =





1
2

0 1
2

0 1 0
1
2

0 1
2



 .

Therefore, p211 = 1 and

P (X6 = 0, X4 = 0|X3 = 1, X1 = 2) = P (X6 = 0, X4 = 0|X3 = 1)

= P (X6 = 0|X4 = 0)P (X4 = 0|X3 = 1)

= p200p10 = 0.5 · 0.5 = 0.25.

5.a
We have

E(µ̂) = E

(

1

n

n
∑

i=1

Xi

)

=
1

n

n
∑

i=1

E(Xi) =
1

n
nµ = µ

and

E(µ̃) = E

(

n
∑

i=1

2i

n(n+ 1)
Xi

)

=
2

n(n + 1)

n
∑

i=1

iE(Xi) =
2

n(n+ 1)
µ

n
∑

i=1

i = µ
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with
∑n

i=1 i =
n(n+1)

2
(see collection of formulas), i.e., µ̂ and µ̃ are unbiased. In order

to find the best estimator, we calculate the variance by

V ar(µ̂) = V ar

(

1

n

n
∑

i=1

Xi

)

==
1

n2

n
∑

i=1

V ar(Xi) =
1

n2
nσ2 =

1

n
σ2

and

V ar(µ̃) = V ar

(

n
∑

i=1

2i

n(n + 1)
Xi

)

=
4

n2(n + 1)2
V ar

(

n
∑

i=1

iXi

)

=
4

n2(n+ 1)2

n
∑

i=1

i2V ar(Xi) =
4

n2(n+ 1)2
σ2

n
∑

i=1

i2

=
4

n2(n+ 1)2
n(n+ 1)(2n+ 1)

6
σ2 =

2

3

2n+ 1

n(n + 1)
σ2.

Now, we have
2

3

2n+ 1

n(n+ 1)
=

1

n

(

2

3

2n+ 1

n + 1

)

≥
1

n
, ∀n ≥ 1.

Therefore, V ar(µ̂) ≤ V ar(µ̃), ∀µ ∈ R, i.e., µ̂ is a better estimator than µ̃.

6.a
We have X ∼ N(5, 0.82). Therefore, calculations are as follows:

P (X > 6) = 1− P (X ≤ 6) = 1− P

(

X − 5

0.8
≤

6− 5

0.8

)

= 1− P (Z ≤ 1.25) with Z ∼ N(0, 1)

= 1− 0.8944 = 0.1056 using table for standard normal distribution.

Therewith, ca. 10.56% of the cars have to be re-manufactured. Now, we like to
calculate a σ that ensures that no more than 1 percent of the cars are re-manufactured.

P (X > 6) ≤ 0.01

⇔ P

(

X − 5

σ
>

6− 5

σ

)

= P

(

Z >
1

σ

)

≤ 0.01.

From the collection of formulas we have P (Z > 2.326) = 0.01 and thus 2.326 ≥ 1
σ
.

Therefore, σ ≤ 0.43 ensures that no more than 1% of the cars have to be re-
manufactured.
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7.a
The transition graph with attached specific transition rates is given by:

0 1 2 3 4 5

λ

γ

λ

2γ

λ

2γ

λ

2γ

λ

2γ

In order to find the steady state equations we have to balance the rate out and the
rate in in each state, i.e.,

0 : π1γ = π0λ

1 : π0λ + π22γ = π1(λ+ γ) ⇔ π22γ = π1λ

2 : π1λ + π32γ = π2(λ+ 2γ) ⇔ π32γ = π2λ

3 : π2λ + π42γ = π3(λ+ 2γ) ⇔ π42γ = π3λ

4 : π3λ + π52γ = π4(λ+ 2γ) ⇔ π52γ = π4λ

5 : π4λ = π5(2γ)

From the first equation we get π1 = λ
γ
π0. Combining the two first equations gives

π22γ = π1λ which again give π2 = λ
2γ
π1 = λ2

2γ2π0. Inserting π1λ = π22γ in the

third equation give π3 = λ
2γ
π2 = λ3

22γ3π0 = 2
(

λ
2γ

)3

π0. This continues with the same

structure and we generally have:

πk = 2

(

λ

2γ

)k

π0 = 2ρkπ0, k = 1, 2, 3, 4, 5

with ρ = λ
2γ

> 0. Combining this with
∑5

k=0 πk = 1 and using
∑n

k=0 a
k = 1−an+1

1−a

give:

π0 +
5
∑

k=1

2ρkπ0 = 1

⇔ π0

(

1 +
5
∑

k=1

2ρk

)

= 1

⇔ π0 =
1

1 + 2
∑5

k=1 ρ
k
=

1

1− 2 + 2
∑5

k=0 ρ
k

=
1

−1 + 21−ρ6

1−ρ

=
1

−1−ρ
1−ρ

+ 21−ρ6

1−ρ

=
1

−1+ρ+2−2ρ6

1−ρ

=
1− ρ

1 + ρ− 2ρ6
.
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Thus πk = 2ρk 1−ρ
1+ρ−2ρ6

for k = 1, 2, 3, 4, 5.

Let K denote the number of vehicles. The mean number of vehicles at the station is
given by

E(K) =

5
∑

k=0

kP (K = k) =

5
∑

k=0

kπk =

5
∑

k=1

kπk

= 2π0

5
∑

k=1

kρk = 2
1− ρ

1 + ρ− 2ρ6
(ρ+ 2ρ2 + 3ρ3 + 4ρ4 + 5ρ5).

Using ρ = λ
2γ

= 0.4
2·0.25

= 0.8, we get E(K) = 2.16.
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