EXAM IN: STA500 INTRODUCTION TO PROBABILITY AND STATISTICS 2
DURATION: 4 HOURS DATE: February 13th, 2019.
PERMITTED AIDS: Approved simple calculator (HP30S, Casio FX82, TI-30,
Citizen SR-270X, Texas BA II Plus or HP17bII+).
THE EXAM CONSISTS OF 4 PROBLEMS ON 3 PAGES, 18 PAGES OF ENCLOSURES.
EXAM RESPONSIBLE: Tore Selland Kleppe PHONE: 51831717

Note: Throughout this exam, all logarithms are natural logarithms, so that $\log (x)=\ln (x)$, and 10-based logarithms are not used.

Problem 1:

Suppose $X \sim N(0,1)$ and define $Y=\exp (-2(X+1))$.
a) Find the probability density function of Y. Which distribution does Y have?

Find $E(Y)$ and $\operatorname{Var}(Y)$.
Find also $P(Y>1)$.
Consider a situation where $X \sim N(0,1)$ and $Y=X+\eta, \eta \sim N(0,1)$, where X and η are independent. The joint probability density function of X and Y is given as:

$$
f_{X, Y}(x, y)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right) \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{(y-x)^{2}}{2}\right) .
$$

You might find useful that $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f_{X, Y}(x, y) d x d y=1$.
b) Argue for why the marginal distribution of Y is $N(0,2)$.

Find the covariance $\operatorname{Cov}(X, Y)$ and correlation $\operatorname{corr}(X, Y)$.
Are X and Y independent?

Problem 2: Consider a situation where we have n independent observations $Y_{i}, i=$ $1, \ldots, n$. Each observation Y_{i} has a gamma distribution with shape parameter $\alpha=4$ and scale parameter $\beta=\theta x_{i}$, where $x_{i}>0$ are a known, non-random quantities and $\theta>0$ is the parameter of interest 1 The probability density function of Y_{i} is given as

$$
f_{Y_{i}}\left(y_{i}\right)=\frac{1}{\left(\theta x_{i}\right)^{4} \Gamma(4)} y_{i}^{3} \exp \left(-\frac{y_{i}}{\theta x_{i}}\right) .
$$

a) Find the log-likelihood function for θ and show that the maximum likelihood estimator is given as $\hat{\theta}=\frac{1}{4 n} \sum_{i=1}^{n} \frac{Y_{i}}{x_{i}}$
b) Verify that $\hat{\theta}$ given above is a consistent estimator for θ as $n \rightarrow \infty$.
c) Which distribution does $\frac{8 n \hat{\theta}}{\theta}$ have?

Problem 3: Consider a discrete time Markov chain with state space $\{0,1\}$ with transition probability matrix

$$
P=\left(\begin{array}{cc}
0 & 1 \\
(1-\alpha) & \alpha
\end{array}\right)
$$

where $0<\alpha<1$ is a parameter.
a) Explain why this Markov chain admit steady state probabilities.

Find the steady state probabilities.
Assuming that we have available a realisation $X_{1}, X_{2}, \ldots, X_{T}$ of the discrete time Markov chain with transition probability matrix P above, and wish to estimate α. I.e. X_{t} is the state the Markov chain was in at time t, for $t=1, \ldots, T$. The likelihood function for α may be written as

$$
L\left(\alpha \mid X_{1}, \ldots, X_{T}\right)=\prod_{t=2}^{T}\left(\alpha^{X_{t}}(1-\alpha)^{1-X_{t}}\right)^{X_{t-1}}
$$

b) Find the maximum likelihood estimator for α.

Comment on why the maximum likelihood estimator you obtain makes sense.

Now, consider Bayesian estimation of α using a uniform (i.e. Beta(1,1))-prior.
c) Find the posterior distribution of α given X_{1}, \ldots, X_{T}.

Find the Bayes estimator, and compare it to the maximum likelihood estimator.

[^0]Problem 4: Consider the continuous time Markov chain $X(t)$ with state space $\mathcal{S}=$ $\{0,1\}$ specified in terms of the graph

a) Write down specific transition rates $\left(q_{01}, q_{10}\right)$ and total rates out $\left(\nu_{0}, \nu_{1}\right)$? Find the steady state probabilities for this process.

It can be shown that the full set of transition probabilities $p_{i j}(t)$ for this process have the form

$$
\begin{aligned}
p_{00}(t) & =\frac{\gamma}{\lambda+\gamma}+\frac{\lambda}{\lambda+\gamma} \exp (-(\lambda+\gamma) t), \\
p_{10}(t) & =\frac{\gamma}{\lambda+\gamma}[1-\exp (-(\lambda+\gamma) t)], \\
p_{01}(t) & =\frac{\lambda}{\lambda+\gamma}[1-\exp (-(\lambda+\gamma) t)], \\
p_{11}(t) & =\frac{\lambda}{\lambda+\gamma}+\frac{\gamma}{\lambda+\gamma} \exp (-(\lambda+\gamma) t) .
\end{aligned}
$$

b) For $\lambda=1, \gamma=2$, calculate the following probabilities:
$P(X(1)=0)$ (i.e. the unconditional probability of being in state 0).
$P(X(1)=0 \mid X(0)=0)$.
$P(X(3)=0, X(1)=1 \mid X(0)=1)$.
$P(X(t)=0 \forall t \in(0,1) \mid X(0)=0)$.
(The last probability may be interpreted as the probability that the process remains in state 0 all times between time $t=0$ and $t=1$, given that it is in state 0 at time $t=0$.)

Solutions

1,a)
From first principles using transformation formula; $y=u(x)=\exp (-2(x+1)) \Rightarrow$ $-1-\log (y) / 2=w(y)=x$. $\left|w^{\prime}(y)\right|=1 /(2 y)$, which gives the density

$$
f_{Y}(y)=\frac{1}{\sqrt{2 \pi} 2 y} \exp \left(-\frac{1}{2}(-\log (y) / 2-1)^{2}\right)
$$

This is recognized to be a log-normal distribution with parameters $\sigma=2, \mu=-2$. Alternatively, it is OK to recognise that $-2(x+1) \sim N\left(-2,2^{2}\right)$ and use knowledge of the relation between normal and log-normal distributions.
The mean and variance obtain from the formulas for the log-normal distribution
$E(Y)=\exp \left(\mu+\sigma^{2} / 2\right)=\exp (-2+4 / 2)=1$
$\operatorname{Var}(Y)=\exp \left(2\left(\mu+\sigma^{2}\right)\right)-\exp \left(2 \mu+\sigma^{2}\right)=\exp (4)-1$
To find the sought probability, we have that $P(Y>1)=P(-2(X+1)>\log (1))$ $=P(-2 X-2>0)=P(-2 X>2)=P(X<-1) \approx 0.1587$, (numerical answer from standard normal table).
1,b)
The random variable Y obtains as the sum of two Normal random variables and is therefore also Normal. The distribution of Y is therefore fully characterised by the mean and variance:
$E(Y)=E(X)+E(\eta)=0 ; \operatorname{Var}(X)=\operatorname{Var}(X)+\operatorname{Var}(\eta)=2 \Rightarrow Y \sim N(0,2)$.
The covariance is defined as $(E(X-E(X))(Y-E(Y))$). From the information, it is clear that both marginal expectations are zero, thus $\operatorname{Cov}(X, Y)=E(X Y)=$ $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f_{X, Y}(x, y) d x d y=1$. The correlation is given as $\rho=\operatorname{Cov}(X, Y) / \sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}=$ $1 / \sqrt{2}$. Since the variables have non-zero covariance, they are dependent. (alternatively, it is OK to show that the joint density does not factorise as the product of marginal densities.)
2,a)
Likelihood function:

$$
\begin{aligned}
& L\left(\theta \mid Y_{1}, \ldots, Y_{n}\right)=\prod_{i=1}^{n} \frac{1}{\left(\theta x_{i}\right)^{4} \Gamma(4)} Y_{i}^{3} \exp \left(-\frac{Y_{i}}{\theta x_{i}}\right) . \\
& \propto \theta^{-4 n} \exp \left(-\frac{1}{\theta} \sum_{i=1}^{n} \frac{Y_{i}}{x_{i}}\right)
\end{aligned}
$$

Log likelihood function:

$$
l(\theta)=\mathrm{constant}-4 n \log (\theta)-\frac{1}{\theta} \sum_{i=1}^{n} \frac{Y_{i}}{x_{i}}
$$

Derivative (score function)

$$
\frac{\partial}{\partial \theta} l(\theta)=-\frac{4 n}{\theta}+\frac{1}{\theta^{2}} \sum_{i=1}^{n} \frac{Y_{i}}{x_{i}}
$$

Multiply score by θ^{2} and set equal to zero:

$$
-4 n \theta+\sum_{i=1}^{n} \frac{Y_{i}}{x_{i}}=0
$$

Potential MLE:

$$
\hat{\theta}=\frac{1}{4 n} \sum_{i=1}^{n} \frac{Y_{i}}{x_{i}}
$$

Check second derivative of log-likelihood

$$
\frac{\partial^{2}}{\partial \theta^{2}} l(\theta)=\frac{4 n}{\theta^{2}}-\frac{2}{\theta^{3}} \sum_{i=1}^{n} \frac{Y_{i}}{x_{i}}
$$

(not obvious that this is uniformly negative, thus) Evaluating second derivative at critical point (via some straight forward algebra):

$$
\frac{\partial^{2}}{\partial \theta^{2}} l(\hat{\theta})=-\frac{64 n^{3}}{\left(\sum_{i=1}^{n} \frac{Y_{i}}{x_{i}}\right)^{2}}
$$

I.e. negative curvature around critical point $\hat{\theta} \Rightarrow \hat{\theta}$ is MLE.

2,b)
First, it is clear that $E\left(Y_{i}\right)=\alpha \beta=4 x_{i} \theta$ and $\operatorname{Var}\left(Y_{i}\right)=\alpha \beta^{2}=4 x_{i}^{2} \theta^{2}$. Thus,

$$
E(\hat{\theta})=E\left(\frac{1}{4 n} \sum_{i=1}^{n} \frac{Y_{i}}{x_{i}}\right)=\frac{1}{4 n} \sum_{i=1}^{n} \underbrace{E\left(\frac{Y_{i}}{x_{i}}\right)}_{=4 \theta}=\theta
$$

I.e. the estimator is unbiased. Now, to show consistency, the variance must vanish as $n \rightarrow \infty$:

$$
\operatorname{Var}(\hat{\theta})=\frac{1}{16 n^{2}} \operatorname{Var}\left(\sum_{i=1}^{n} \frac{Y_{i}}{x_{i}}\right) \underbrace{=}_{\text {indep. }} \frac{1}{16 n^{2}} \sum_{i=1}^{n} \underbrace{\frac{\operatorname{Var}\left(Y_{i}\right)}{x_{i}^{2}}}_{=4 \theta^{2}}=\frac{\theta^{2}}{4 n} .
$$

Since the estimator is unbiased and the variance vanishes as $n \rightarrow \infty$ the estimator is consistent.
2, c)
First notice that

$$
\frac{8 n \hat{\theta}}{\theta}=\frac{8 n}{\theta} \frac{1}{4 n} \sum_{i=1}^{n} \frac{Y_{i}}{x_{i}}=\frac{2}{\theta} \sum_{i=1}^{n}\left(Y_{i} / x_{i}\right)
$$

From the text, it is clear that Y_{i} has a gamma distribution with shape parameter $\alpha=4$ and scale parameter $\beta=x_{i} \theta$, thus, via transformation from general gamma to χ^{2} that $2 Y_{i} / \beta=(2 / \theta)\left(Y_{i} / x_{i}\right) \sim \chi_{8}^{2}$. From this information it is clear (via sum of independent χ^{2} RVs) that $\frac{8 n \hat{\theta}}{\theta}=(2 / \theta) \sum_{i=1}^{n}\left(Y_{i} / x_{i}\right) \sim \chi_{8 n}^{2}$.
3,a)
The process is irreducible (both states communicate with each other) and is aperiodic (as $P_{11}>0$). The steady state probs π obtain by solving $P^{T} \pi=\pi$ along with $\sum_{i} \pi_{i}=1$. Taking the first equation and the normalisation condition, we obtain

$$
\begin{gathered}
(1-\alpha) \pi_{1}=\pi_{0}, \pi_{0}+\pi_{1}=1 \Downarrow \\
(1-\alpha) \pi_{1}+\pi_{1}=1 \Rightarrow \pi_{1}=1 /(2-\alpha)
\end{gathered}
$$

$$
\pi_{0}=1-1 /(2-\alpha)=(1-\alpha) /(2-\alpha)
$$

3,b)
Likelihood function rewritten

$$
L(\alpha)=\prod_{t=2}^{T}\left(\alpha^{X_{t}}(1-\alpha)^{\left(1-X_{t}\right)}\right)^{X_{t-1}}
$$

Log likelihood function

$$
l(\alpha)=\sum_{t=2}^{T} X_{t-1}\left(X_{t} \log (\alpha)+\left(1-X_{t}\right) \log (1-\alpha)\right)
$$

Derivative (score function)

$$
\frac{\partial}{\partial \alpha} l(\alpha)=\sum_{t=2}^{T} X_{t-1}\left(\frac{X_{t}}{\alpha}-\frac{1-X_{t}}{1-\alpha}\right)
$$

Multiply score by $\alpha(1-\alpha)$ and set equal to zero:

$$
\begin{gathered}
\alpha \sum_{t=2}^{T} X_{t-1}\left(1-X_{t}\right)=(1-\alpha) \sum_{t=2}^{T} X_{t-1} X_{t} \\
\Downarrow \\
\hat{\alpha}=\frac{\sum_{t=2}^{T} X_{t-1} X_{t}}{\sum_{t=2}^{T} X_{t-1}}
\end{gathered}
$$

Now check second derivative

$$
\frac{\partial^{2}}{\partial \alpha^{2}} l(\alpha)=\sum_{t=2}^{T} X_{t-1}\left(-\frac{X_{t}}{\alpha^{2}}-\frac{1-X_{t}}{(1-\alpha)^{2}}\right)
$$

Since X_{t} only take values 0 or 1, the second derivative is uniformly negative: $\hat{\alpha}$ above is MLE.
Comment: We see that the MLE count the proportion of times the process remains in state 1 (i.e. $X_{t-1} X_{t}=1$), given that the process was in state 1 in time $t-1$. In the theoretical model, the probability of this occurring is α, thus we are estimating a probability with the corresponding observed frequency.
3,c)
The prior is flat, so the shape of the posterior is that of the likelihood function, slightly rewritten:
$p\left(\alpha \mid X_{1}, \ldots, X_{T}\right) \propto \prod_{t=2}^{T} \alpha^{X_{t-1} X_{t}}(1-\alpha)^{X_{t-1}\left(1-X_{t}\right)}=\alpha^{\sum_{t=2}^{T} X_{t-1} X_{t}}(1-\alpha)^{\sum_{t=2}^{T} X_{t-1}\left(1-X_{t}\right)}$
This is recognised to be a $\operatorname{Beta}\left(1+\sum_{t=2}^{T} X_{t-1} X_{t}, 1+\sum_{t=2}^{T} X_{t-1}\left(1-X_{t}\right)\right)$ kernel, so the posterior distribution is Beta with parameters given above.
The posterior mean/Bayes estimator is found, using the formula for the Beta distribution mean, to be

$$
\hat{\alpha}_{\text {Bayes }}=\frac{1+\sum_{t=2}^{T} X_{t-1} X_{t}}{1+\sum_{t=2}^{T} X_{t-1} X_{t}+1+\sum_{t=2}^{T} X_{t-1}\left(1-X_{t}\right)}=\frac{1+\sum_{t=2}^{T} X_{t-1} X_{t}}{2+\sum_{t=2}^{T} X_{t-1}}
$$

It is seen that the Bayes estimator is similar to the MLE for large samples, and converges to the MLE when $T \rightarrow \infty$. For small samples, the Bayes estimator is "pulled" towards the prior mean, namely 0.5.
4,a)
First, $q_{01}=\nu_{0}=\lambda, q_{10}=\nu_{1}=\gamma$.
To get the steady state probabilities we consider the "flow" conservation equation for state 0 and the normalising relation:

$$
0=q_{10} \pi_{1}-\nu_{0} \pi_{0}=\gamma \pi_{1}-\lambda \pi_{0} \text { and } \pi_{0}+\pi_{1}=1
$$

These results in

$$
\begin{gathered}
\pi_{1}=\frac{\lambda}{\gamma} \pi_{0} \Rightarrow\left(1+\frac{\lambda}{\gamma}\right) \pi_{0}=1 \Rightarrow \pi_{0}=\frac{\gamma}{\lambda+\gamma} \\
\pi_{1}=1-\pi_{0}=\frac{\lambda}{\lambda+\gamma}
\end{gathered}
$$

4,b)
First, marginal / steady state prob $P\left(X_{1}=0\right)=\pi_{0}=1 / 3=0.333333333$
Second; $P\left(X_{1}=0 \mid X_{0}=0\right)=p_{00}(1)=2 / 3+1 / 3 \exp (-3)=0.6832624$
Third; $P\left(X_{3}=0, X_{1}=1 \mid X_{0}=1\right)=p_{11}(1) \times p_{10}(2)$
$=(1 / 3+2 / 3 \exp (-3)) \times 2 / 3(1-\exp (-6))=0.2437441$
Fourth; The sought probability is 1 minus the probability that the process leaves state 0 in $t \in(0,1)$. The time the process spends in state 0 (until it leaves the first time) is exponentially distributed with mean $1 / \lambda=1$, thus, the sought probability is $1-\int_{0}^{1} \exp (-t) d t=\exp (-1)=0.36787944$.

[^0]: ${ }^{1}$ E.g. you may think of Y_{i} as the life time of component i, when component i is subject to some stress level x_{i}.

