
EXAM IN: STA500 INTRODUCTION TO PROBABILITY AND STATISTICS 2

DURATION: 4 HOURS DATE: February 13th, 2019.

PERMITTED AIDS: Approved simple calculator (HP30S, Casio FX82, TI-30,

Citizen SR-270X, Texas BA II Plus or HP17bII+ ).

THE EXAM CONSISTS OF 4 PROBLEMS ON 3 PAGES, 18 PAGES OF ENCLO-

SURES.

EXAM RESPONSIBLE: Tore Selland Kleppe PHONE: 51 83 17 17

Note: Throughout this exam, all logarithms are natural logarithms, so that
log(x) = ln(x), and 10-based logarithms are not used.

Problem 1:

Suppose X ∼ N(0, 1) and define Y = exp(−2(X + 1)).

a) Find the probability density function of Y . Which distribution does Y have?
Find E(Y ) and V ar(Y ).
Find also P (Y > 1).

Consider a situation where X ∼ N(0, 1) and Y = X + η, η ∼ N(0, 1), where X and
η are independent. The joint probability density function of X and Y is given as:

fX,Y (x, y) =
1√
2π

exp

(

−x2

2

)
1√
2π

exp

(

−(y − x)2

2

)

.

You might find useful that
∫

∞

−∞

∫
∞

−∞
xyfX,Y (x, y)dxdy = 1.

b) Argue for why the marginal distribution of Y is N(0, 2).
Find the covariance Cov(X, Y ) and correlation corr(X, Y ).
Are X and Y independent?
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Problem 2: Consider a situation where we have n independent observations Yi, i =
1, . . . , n. Each observation Yi has a gamma distribution with shape parameter α = 4
and scale parameter β = θxi, where xi > 0 are a known, non-random quantities and
θ > 0 is the parameter of interest.1 The probability density function of Yi is given as

fYi
(yi) =

1

(θxi)4Γ(4)
y3i exp

(

− yi
θxi

)

.

a) Find the log-likelihood function for θ and show that the maximum likelihood
estimator is given as θ̂ = 1

4n

∑n

i=1
Yi

xi

b) Verify that θ̂ given above is a consistent estimator for θ as n → ∞.

c) Which distribution does 8nθ̂
θ

have?

Problem 3: Consider a discrete time Markov chain with state space {0, 1} with
transition probability matrix

P =

(
0 1

(1− α) α

)

where 0 < α < 1 is a parameter.

a) Explain why this Markov chain admit steady state probabilities.
Find the steady state probabilities.

Assuming that we have available a realisation X1, X2, . . . , XT of the discrete time
Markov chain with transition probability matrix P above, and wish to estimate α.
I.e. Xt is the state the Markov chain was in at time t, for t = 1, . . . , T . The likelihood
function for α may be written as

L(α|X1, . . . , XT ) =
T∏

t=2

(
αXt(1− α)1−Xt

)Xt−1

b) Find the maximum likelihood estimator for α.
Comment on why the maximum likelihood estimator you obtain makes sense.

Now, consider Bayesian estimation of α using a uniform (i.e. Beta(1,1))-prior.

c) Find the posterior distribution of α given X1, . . . , XT .
Find the Bayes estimator, and compare it to the maximum likelihood estimator.

1E.g. you may think of Yi as the life time of component i, when component i is subject to some

stress level xi.
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Problem 4: Consider the continuous time Markov chain X(t) with state space S =
{0, 1} specified in terms of the graph

0 1
λ

γ

a) Write down specific transition rates (q01, q10) and total rates out (ν0, ν1)?
Find the steady state probabilities for this process.

It can be shown that the full set of transition probabilities pij(t) for this process have
the form

p00(t) =
γ

λ+ γ
+

λ

λ+ γ
exp(−(λ+ γ)t),

p10(t) =
γ

λ+ γ
[1− exp(−(λ+ γ)t)] ,

p01(t) =
λ

λ+ γ
[1− exp(−(λ+ γ)t)] ,

p11(t) =
λ

λ+ γ
+

γ

λ+ γ
exp(−(λ+ γ)t).

b) For λ = 1, γ = 2, calculate the following probabilities:
P (X(1) = 0) (i.e. the unconditional probability of being in state 0).
P (X(1) = 0|X(0) = 0).
P (X(3) = 0, X(1) = 1|X(0) = 1).
P (X(t) = 0 ∀ t ∈ (0, 1)|X(0) = 0).
(The last probability may be interpreted as the probability that the process
remains in state 0 all times between time t = 0 and t = 1, given that it is in
state 0 at time t = 0.)
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Solutions

1,a)
From first principles using transformation formula; y = u(x) = exp(−2(x + 1)) ⇒
−1− log(y)/2 = w(y) = x. |w′(y)| = 1/(2y), which gives the density

fY (y) =
1√
2π2y

exp

(

−1

2
(− log(y)/2− 1)2

)

This is recognized to be a log-normal distribution with parameters σ = 2, µ = −2.
Alternatively, it is OK to recognise that −2(x + 1) ∼ N(−2, 22) and use knowledge
of the relation between normal and log-normal distributions.
The mean and variance obtain from the formulas for the log-normal distribution
E(Y ) = exp(µ+ σ2/2) = exp(−2 + 4/2) = 1
V ar(Y ) = exp(2(µ+ σ2))− exp(2µ+ σ2) = exp(4)− 1
To find the sought probability, we have that P (Y > 1) = P (−2(X + 1) > log(1))
= P (−2X − 2 > 0) = P (−2X > 2) = P (X < −1) ≈ 0.1587, (numerical answer from
standard normal table).
1,b)
The random variable Y obtains as the sum of two Normal random variables and is
therefore also Normal. The distribution of Y is therefore fully characterised by the
mean and variance:
E(Y ) = E(X) + E(η) = 0; V ar(X) = V ar(X) + V ar(η) = 2 ⇒ Y ∼ N(0, 2).
The covariance is defined as (E(X − E(X))(Y − E(Y ))). From the information,
it is clear that both marginal expectations are zero, thus Cov(X, Y ) = E(XY ) =
∫
∞

−∞

∫
∞

−∞
xyfX,Y (x, y)dxdy = 1. The correlation is given as ρ = Cov(X, Y )/

√

V ar(X)V ar(Y ) =

1/
√
2. Since the variables have non-zero covariance, they are dependent. (alterna-

tively, it is OK to show that the joint density does not factorise as the product of
marginal densities.)
2,a)
Likelihood function:

L(θ|Y1, . . . , Yn) =
n∏

i=1

1

(θxi)4Γ(4)
Y 3
i exp

(

− Yi

θxi

)

.

∝ θ−4n exp

(

−1

θ

n∑

i=1

Yi

xi

)

Log likelihood function:

l(θ) = constant− 4n log(θ)− 1

θ

n∑

i=1

Yi

xi

Derivative (score function)

∂

∂θ
l(θ) = −4n

θ
+

1

θ2

n∑

i=1

Yi

xi

Multiply score by θ2 and set equal to zero:

−4nθ +
n∑

i=1

Yi

xi

= 0
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⇓
Potential MLE:

θ̂ =
1

4n

n∑

i=1

Yi

xi

Check second derivative of log-likelihood

∂2

∂θ2
l(θ) =

4n

θ2
− 2

θ3

n∑

i=1

Yi

xi

(not obvious that this is uniformly negative, thus) Evaluating second derivative at
critical point (via some straight forward algebra):

∂2

∂θ2
l(θ̂) = − 64n3

(
∑n

i=1
Yi

xi

)2

I.e. negative curvature around critical point θ̂ ⇒ θ̂ is MLE.
2,b)
First, it is clear that E(Yi) = αβ = 4xiθ and V ar(Yi) = αβ2 = 4x2

i θ
2. Thus,

E(θ̂) = E

(

1

4n

n∑

i=1

Yi

xi

)

=
1

4n

n∑

i=1

E(
Yi

xi

)
︸ ︷︷ ︸

=4θ

= θ.

I.e. the estimator is unbiased. Now, to show consistency, the variance must vanish
as n → ∞:

V ar(θ̂) =
1

16n2
V ar

(
n∑

i=1

Yi

xi

)

=
︸︷︷︸

indep.

1

16n2

n∑

i=1

V ar(Yi)

x2
i

︸ ︷︷ ︸

=4θ2

=
θ2

4n
.

Since the estimator is unbiased and the variance vanishes as n → ∞ the estimator is
consistent.
2,c)
First notice that

8nθ̂

θ
=

8n

θ

1

4n

n∑

i=1

Yi

xi

=
2

θ

n∑

i=1

(Yi/xi).

From the text, it is clear that Yi has a gamma distribution with shape parameter
α = 4 and scale parameter β = xiθ, thus, via transformation from general gamma
to χ2 that 2Yi/β = (2/θ)(Yi/xi) ∼ χ2

8. From this information it is clear (via sum of

independent χ2 RVs) that 8nθ̂
θ

= (2/θ)
∑n

i=1(Yi/xi) ∼ χ2
8n.

3,a)
The process is irreducible (both states communicate with each other) and is aperiodic
(as P11 > 0). The steady state probs π obtain by solving P Tπ = π along with
∑

i πi = 1. Taking the first equation and the normalisation condition, we obtain

(1− α)π1 = π0, π0 + π1 = 1 ⇓

(1− α)π1 + π1 = 1 ⇒ π1 = 1/(2− α)
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π0 = 1− 1/(2− α) = (1− α)/(2− α)

3,b)
Likelihood function rewritten

L(α) =
T∏

t=2

(αXt(1− α)(1−Xt))Xt−1

Log likelihood function

l(α) =
T∑

t=2

Xt−1 (Xt log(α) + (1−Xt) log(1− α))

Derivative (score function)

∂

∂α
l(α) =

T∑

t=2

Xt−1

(
Xt

α
− 1−Xt

1− α

)

Multiply score by α(1− α) and set equal to zero:

α

T∑

t=2

Xt−1(1−Xt) = (1− α)
T∑

t=2

Xt−1Xt

⇓

α̂ =

∑T

t=2 Xt−1Xt
∑T

t=2Xt−1

Now check second derivative

∂2

∂α2
l(α) =

T∑

t=2

Xt−1

(

−Xt

α2
− 1−Xt

(1− α)2

)

Since Xt only take values 0 or 1, the second derivative is uniformly negative: α̂ above
is MLE.
Comment: We see that the MLE count the proportion of times the process remains
in state 1 (i.e. Xt−1Xt = 1), given that the process was in state 1 in time t − 1. In
the theoretical model, the probability of this occurring is α, thus we are estimating
a probability with the corresponding observed frequency.
3,c)
The prior is flat, so the shape of the posterior is that of the likelihood function,
slightly rewritten:

p(α|X1, . . . , XT ) ∝
T∏

t=2

αXt−1Xt(1− α)Xt−1(1−Xt) = α
∑

T

t=2
Xt−1Xt(1− α)

∑
T

t=2
Xt−1(1−Xt)

This is recognised to be a Beta(1 +
∑T

t=2Xt−1Xt, 1 +
∑T

t=2 Xt−1(1 −Xt)) kernel, so
the posterior distribution is Beta with parameters given above.
The posterior mean/Bayes estimator is found, using the formula for the Beta distri-
bution mean, to be

α̂Bayes =
1 +

∑T

t=2 Xt−1Xt

1 +
∑T

t=2 Xt−1Xt + 1 +
∑T

t=2 Xt−1(1−Xt)
=

1 +
∑T

t=2 Xt−1Xt

2 +
∑T

t=2Xt−1
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It is seen that the Bayes estimator is similar to the MLE for large samples, and
converges to the MLE when T → ∞. For small samples, the Bayes estimator is
”pulled” towards the prior mean, namely 0.5.
4,a)
First, q01 = ν0 = λ, q10 = ν1 = γ.
To get the steady state probabilities we consider the ”flow” conservation equation for
state 0 and the normalising relation:

0 = q10π1 − ν0π0 = γπ1 − λπ0 and π0 + π1 = 1

These results in

π1 =
λ

γ
π0 ⇒ (1 +

λ

γ
)π0 = 1 ⇒ π0 =

γ

λ+ γ

π1 = 1− π0 =
λ

λ+ γ

4,b)
First, marginal / steady state prob P (X1 = 0) = π0 = 1/3 = 0.333333333
Second; P (X1 = 0|X0 = 0) = p00(1) = 2/3 + 1/3 exp(−3) = 0.6832624
Third; P (X3 = 0, X1 = 1|X0 = 1) = p11(1)× p10(2)
= (1/3 + 2/3 exp(−3))× 2/3(1− exp(−6)) = 0.2437441
Fourth; The sought probability is 1 minus the probability that the process leaves
state 0 in t ∈ (0, 1). The time the process spends in state 0 (until it leaves the first
time) is exponentially distributed with mean 1/λ = 1, thus, the sought probability is

1−
∫ 1

0
exp(−t)dt = exp(−1) = 0.36787944.

7


