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EXAM IN: STA500 INTRODUCTION TO PROBABILITY AND STATISTICS 2

DURATION: 4 HOURS DATE: February 13th, 2019.

PERMITTED AIDS: Approved simple calculator (HP30S, Casio FX82, TI-30,
Citizen SR-270X, Texas BA II Plus or HP17bII+ ).

THE EXAM CONSISTS OF 4 PROBLEMS ON 3 PAGES, 18 PAGES OF ENCLO-

SURES.

EXAM RESPONSIBLE: Tore Selland Kleppe PHONE: 51 83 17 17

Note: Throughout this exam, all logarithms are natural logarithms, so that
log(z) = In(z), and 10-based logarithms are not used.

Problem 1:

Suppose X ~ N(0,1) and define Y = exp(—2(X + 1)).

a) Find the probability density function of Y. Which distribution does Y have?
Find E(Y) and Var(Y).
Find also P(Y > 1).

Consider a situation where X ~ N(0,1) and Y = X +n, n ~ N(0,1), where X and
n are independent. The joint probability density function of X and Y is given as:

fxy(z,y) = \/%_ﬂ exp (_%2> \/12_776Xp (_(y —21:)2) |

You might find useful that [~ [ azyfxy(z,y)dedy = 1.

b) Argue for why the marginal distribution of Y is N(0, 2).
Find the covariance Cov(X,Y’) and correlation corr(X,Y).
Are X and Y independent?



Problem 2: Consider a situation where we have n independent observations Y;, i =
1,...,n. Each observation Y; has a gamma distribution with shape parameter a = 4
and scale parameter § = 0x;, where x; > 0 are a known, non-random quantities and
6 > 0 is the parameter of interest/] The probability density function of Y; is given as

fyiyi) = my? exp <_0%1;> ‘

a) Find the log—likelihoogl function for # and show that the maximum likelihood
estimator is given as § = L > L

b) Verify that 0 given above is a consistent estimator for 6 as n — oco.

¢) Which distribution does S%é have?

Problem 3: Consider a discrete time Markov chain with state space {0,1} with
transition probability matrix
0 1
P= ((1 — ) a)

where 0 < a < 1 is a parameter.

a) Explain why this Markov chain admit steady state probabilities.
Find the steady state probabilities.

Assuming that we have available a realisation X, X,,..., X7 of the discrete time
Markov chain with transition probability matrix P above, and wish to estimate «.
Le. X, is the state the Markov chain was in at time ¢, for t = 1, ..., T. The likelihood
function for o may be written as

L(a| Xy, ..., Xr) = H (oth(l _ Oé)l—Xt)Xt—l

t=2

b) Find the maximum likelihood estimator for a.
Comment on why the maximum likelihood estimator you obtain makes sense.

Now, consider Bayesian estimation of « using a uniform (i.e. Beta(1,1))-prior.

¢) Find the posterior distribution of « given Xj, ..., Xr.
Find the Bayes estimator, and compare it to the maximum likelihood estimator.

'E.g. you may think of Y; as the life time of component ¢, when component i is subject to some
stress level ;.



Problem 4: Consider the continuous time Markov chain X (¢) with state space S =
{0,1} specified in terms of the graph

A

O————=0)

g

a) Write down specific transition rates (go1,¢10) and total rates out (v, v1)?
Find the steady state probabilities for this process.

It can be shown that the full set of transition probabilities p;;(¢) for this process have
the form

poo(t) = )\17+)\j\_76XP(_(A+’Y)t)>
po(t) = 5o 1= ep(=0 ),
pult) = 1y (L= esp(- (A ),
pult) = 1o+ s e+ )

b) For A =1, v = 2, calculate the following probabilities:

P(X (1) =0) (i.e. the unconditional probability of being in state 0).

P(X(1) =0|X(0) =0).
P(X(3)=0,X(1)=1|X(0) =1).
P(X(t)=0Vte (0,1)|X(0)=0).
(The last probability may be interpreted as the probability that the process
remains in state 0 all times between time ¢t = 0 and ¢ = 1, given that it is in
state 0 at time t = 0.)



Solutions

1,a)
From first principles using transformation formula; y = u(x) = exp(—2(z + 1)) =
—1—1log(y)/2 =w(y) = x. |w'(y)| = 1/(2y), which gives the density

V%dep( 5 low)/2 - 1)

This is recognized to be a log-normal distribution with parameters ¢ = 2, y = —2.
Alternatively, it is OK to recognise that —2(z + 1) ~ N(—2,2%) and use knowledge
of the relation between normal and log-normal distributions.

The mean and variance obtain from the formulas for the log-normal distribution
E(Y) =exp(pu+0%/2) =exp(—2+4/2) =1

Var(Y) = exp(2(u + 0?)) — exp(2u + 0?) = exp(4) — 1

To find the sought probability, we have that P(Y > 1) = P(—2(X + 1) > log(1))
=P(—2X —-2>0) = P(—2X >2)=P(X < —1) = 0.1587, (numerical answer from
standard normal table).

1,b)

The random variable Y obtains as the sum of two Normal random variables and is
therefore also Normal. The distribution of Y is therefore fully characterised by the
mean and variance:

EY)=EX)+E@n) =0;Var(X)=Var(X)+Var(n) =2=Y ~ N(0,2).

The covariance is defined as (E(X — E(X))(Y — E(Y))). From the information,
it is clear that both marginal expectations are zero, thus Cov(X,Y) = E(XY) =
2 7 ayfxy(z,y)dady = 1. The correlation is given as p = Cov(X,Y)/\/Var(X)Var(Y) =

1/v/2 \/_ . Since the variables have non-zero covariance, they are dependent. (alterna-
tively, it is OK to show that the joint density does not factorise as the product of
marginal densities.)

2,a)

Likelihood function:

n 1 5 }/Z
LOM,.-. ) = || iy ¥ o <_8xi> '

i=1

1 Y,
4n ?
x 0~ exp( P —>

fr(y) =

Log likelihood function:

1 &Y,
[(0) = constant — 4nlog(6) — 7 Z -
—1
Derivative (score function)
0
(99l<6 92 Z z

Multiply score by 6% and set equal to zero:

—4n9+zn:§ =
i=1 """
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Potential MLE:

Check second derivative of log-likelihood

92
3921( _2 03 Z T

(not obvious that this is uniformly negative, thus) Evaluating second derivative at
critical point (via some straight forward algebra):

9% . 64n>

—ll) =———
% (zr %)

[.e. negative curvature around critical point 0 = 6 is MLE.
2,b)
First, it is clear that E(Y;) = aff = 42,0 and Var(Y;) = a8 = 42?6*. Thus,

E(9A>:E<41nZ l) 4nZEa:Z

[.e. the estimator is unbiased. Now, to show consistency, the variance must vanish
as n — oo:

indep. 1= j

A " Y, 1« Var(y;) 62
Var(f) = 16n2 Tonz" " (Z x_> ~ 16m2 Z x2 T in
i=1 ~* i=1 \ ,
=402

Since the estimator is unbiased and the variance vanishes as n — oo the estimator is
consistent.

2,c)

First notice that

nA 8n 1 <
— L Y,/
0 4n Z T 0 Z (Yi/ws).
From the text, it is clear that Y; has a gamma dlstrlbutlon with shape parameter

a = 4 and scale parameter § = x;0, thus, via transformation from general gamma
to x? that 2Y/,8 (2/0)(Yi/xi) ~ x3. From this information it is clear (via sum of
independent x? RVs) that 8”9 =(2/0) 30" (Yi/zi) ~ X3,

3,a)

The process is irreducible (both states communicate with each other) and is aperiodic
(as P;; > 0). The steady state probs 7 obtain by solving PTr = 7 along with
>, m = 1. Taking the first equation and the normalisation condition, we obtain

1—a)m =m, mo+m =11

l-—am+m=1=>m=1/(2-a)
5



Tm=1-1/2—a)=(1—-a)/(2—«)

3,b)
Likelihood function rewritten

L(a) e H(OéXt(l — a)(l—Xt))thl

t=2

Log likelihood function

l(a) = 37 Xy (X;log(a) + (1 - X,)log(1 — )

t=2

Derivative (score function)
) = X, 1-X
o) = X, . [ 2= ¢
Oa () ; - ( a -« )

Multiply score by a(1 — «) and set equal to zero:

T T
ad Xia(1-X)=(1-a)) XX,
t=2

t=2
4
& — 23:2 X1 Xy
ZtT:2 X

Now check second derivative

92 T X, 1-X,
@ﬂ®—;&1@§—a:ﬁ>

Since X; only take values 0 or 1, the second derivative is uniformly negative: & above
is MLE.

Comment: We see that the MLE count the proportion of times the process remains
in state 1 (i.e. X;_1X; = 1), given that the process was in state 1 in time ¢t — 1. In
the theoretical model, the probability of this occurring is «, thus we are estimating
a probability with the corresponding observed frequency.

3,¢)

The prior is flat, so the shape of the posterior is that of the likelihood function,
slightly rewritten:

p(Oé|X1, - ,XT) X H OéXt*lX’/(l — a)thl(l_Xf) — aEtT:Q Xt—lxt(l _ Oé)thZQ Xi—1(1—X4)

This is recognised to be a Beta(1 + 2322 XX, 1+ Ethz X;-1(1 — X3)) kernel, so
the posterior distribution is Beta with parameters given above.

The posterior mean/Bayes estimator is found, using the formula for the Beta distri-
bution mean, to be

A 1+ 23:2 X1 Xy 1+ 25:2 XXy
QBayes — =

1+ ZtT:Q XiaXp+1+ ZtT:Q Xt—l(1 - Xt) 2+ Zfzz X1
6




It is seen that the Bayes estimator is similar to the MLE for large samples, and
converges to the MLE when T — oo. For small samples, the Bayes estimator is
"pulled” towards the prior mean, namely 0.5.

4,a)

First, o1 = vo = A, quo = 11 = 7.

To get the steady state probabilities we consider the "flow” conservation equation for
state 0 and the normalising relation:

0= gi1071 — VoTrg = YT — )\7'('0 and o+ 7T = 1

These results in

A A v
1 ~ 0 ( '7) 0 = 0 )\—1-7

] A
1 ™0 \ T ~

4.b)
First, marginal / steady state prob P(X; =0) = my = 1/3 = 0.333333333
Second; P(X; = 0|Xo=0) = po(1) =2/3 + 1/3exp(—3) = 0.6832624
Thlrd, P(Xg = O,Xl = HXO = 1) = pll(l) X p10(2>
= (1/3+2/3exp(—3)) x 2/3(1 — exp(—6)) = 0.2437441
Fourth; The sought probability is 1 minus the probability that the process leaves
state 0 in t € (0,1). The time the process spends in state 0 (until it leaves the first
time) is exponentially distributed with mean 1/A = 1, thus, the sought probability is

1 — [} exp(—t)dt = exp(—1) = 0.36787944.



