
STA500 Introduction to Probability and Statistics 2, autumn 2018.

Solution exercise set 3

Exercises from the book:

6.40

X=consumption of water is having a gamma distribution with α = 2 and β = 3.

P (X > 9) =

∫ ∞
9

1

32Γ(2)
x2−1e−x/3dx =

1

9

∫ ∞
9

xe−x/3dx

=
1

9
[x(−3)e−x/3]∞9 −

1

9

∫ ∞
9
−3e−x/3dx

=
1

9
27e−3 +

1

9
[−9e−x/3]∞9 = 3e−3 + e−3 = 4e−3 = 0.199

Here integration by parts is used to solve the integral. Alternatively the integration formula

found on the last page of the formula sheets could have been used.

6.43

a) By the general formulas for expectation and variance in the gamma distribution we get:

E(X) = αβ = 2 · 3 = 6 and Var(X) = αβ2 = 2 · 32 = 18.
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6.47

a) For the Weibull distribution with parameters α and β we have that (see the paragraph

about the gamma function on the formula sheets)

E(X) = α−1/βΓ(1 + 1
β ). I.e.

E(X) = 0.5−1/2Γ(1 +
1

2
) =
√

2 · Γ(
3

2
) =
√

2(
3

2
− 1)Γ(

1

2
) =

√
π

2
= 1.25

b)

f(x) = αβxβ−1e−αx
β

= xe−
1
2
x2 , x ≥ 0 which gives that:

P (X > 2) =

∫ ∞
2

xe−
1
2
x2dx = [−e−

1
2
x2 ]∞2 = e−

1
2
22 = e−2 = 0.135

6.56/6.54

We use the fact that when X is having a lognormal distribution then ln(X) is having a

normal distribution and get:

P (X > 270) = 1− P (X ≤ 270) = 1− P (ln(X) ≤ ln(270))

= 1− P (
ln(X)− 4

2
≤ ln(270)− 4

2
)

= 1− P (Z ≤ 0.80) = 1− 0.7881 = 0.2119

6.57/6.55

For the lognormal distribution we have that E(X) = eµ+σ
2/2 and Var(X) = e2(µ+σ

2)−e2µ+σ2

which here gives that:

E(X) = e4+22/2 = e6 = 403.4

Var(X) = e2(4+22) − e2·4+22 = e16 − e12 = 8723355.7

6.58/6.56

a) Let X be the number of cars arriving at the intersection during one minute. From

the information in the exercise text we get that X is having a Poisson distribution with

expectation 5 such that:

P (X > 10) = 1− P (X ≤ 10)
table
= 1− 0.9863 = 0.0137

b) Here we shall calculate the probability that it will take more than 2 minutes before 10

cars have appeared at the intersection. This can be calculated in two ways.

One (the simplest) way to calculate this is to define Y as the number of events in the

interval [0, 2] and calculate P (Y < 10) (the event that it takes more than 2 minutes until

10 cars have appeared is the same as the event that less than 10 cars appear during the 2

minutes). Y is having a Poisson distribution with expectation λt = 5 · 2 = 10 and we get:

P (Y < 10) = P (Y ≤ 9)
table
= 0.458
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The other way is to define S10 as the time which elapses until car number 10 appears at

the intersection and calculate P (S10 > 2). We know that time until event number 10 in a

Poisson process with λ = 5 is having a gamma distribution with parameters α = 10 and

β = 1/5 (being the sum of 10 exponentially distributed variables with expectation 1/5).

We then get that:

P (S10 > 2) = 1− P (S10 ≤ 2) = 1−
∫ 2

0

1

βαΓ(α)
sα−1e−s/βds

= 1−
∫ 2

0

1

(15)10Γ(10)
s10−1e−5sds

u=5s
= 1−

∫ 10

0

510

Γ(10)
(
u

5
)10−1e−udu/5

= 1−
∫ 10

0

u10−1

Γ(10)
e−udu

tableA.24
= 1− 0.542 = 0.458

6.59/6.57

The time between events in a Poisson process is having an exponential distribution with

expectation 1/λ = 1/5.

a)

P (X > 1) = 1−
∫ 1

0
5e−5xdx = 1− [−e−5x]10 = 1 + e−5 − 1 = 0.0067

b) E(X) = β = 1/5 = 0.2

Exercises from the note on extreme values:

Exercise 1:

We have a parallel system made up of two independent components, where the lifetime of

each component is having an exponential distribution with parameter λ.

FXi(t) = 1− exp(−λt)

Let the lifetime of the system be denoted V . We shall find the distribution of V . The

system is functioning as long as at least one of the components are functioning.
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Figure 1: Parallel system with two components.

FV (v) = P (V < v) = P (max(X1, X2) < v) = P (X1 < v ∩X2 < v)
indep.

= P (X1 < v) · P (X2 < v) = (1− e−λv)2

= 1− 2e−λv + e−2λv

fV (v) = F ′V (v) = 2λe−λv − 2λe−2λv = 2λ(e−λv − e−2λv) , v ≥ 0

Expectation:

E(V ) =

∫ ∞
0

vfV (v)dv =

∫ ∞
0

v2λ(e−λv − e−2λv)dv

= 2

∫ ∞
0

vλe−λv −
∫ ∞
0

v2λe−2λv = 2
1

λ
− 1

2λ
=

3

2λ

Notice that we recognize the two last integrals as the expression for the expectation for

exponentially distributed variables with respectively parameter λ and parameter 2λ, and

we thus know what these integrals are.

Exercise 2:

We have a series system made up of n independent components where the lifetime of

component i is having a Weibull distribution with parameters α and β:

P (Xi ≤ x) = FXi(x) = 1− e−αxβ , x ≥ 0

Let the lifetime of the system be denoted U . We shall first find the distribution of U . The

system is only functioning as long as all components are functioning.

FU (u) = P (U < u) = P (min(X1, X2, ..., Xn) < u) = 1− P (min(X1, X2, ..., Xn) > u)

indep.
= 1−

n∏
i=1

P (Xi > u) = 1−
n∏
i=1

e−αu
β

= 1− e−nαuβ
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n.........X X X X1 2 3

Figure 2: Series system with n components.

We see that this is a Weibull distribution with parameters nα and β.

For the Weibull distribution with parameters α and β we have that E(X) = α−1/βΓ(1+ 1
β ).

I.e. for a single component we have that:

E(X) = 0.1−1/0.5Γ(1 +
1

0.5
) = 100 · Γ(3) = 100 · 2! = 200

For the whole system we get:

E(U) = (n · 0.1)−1/0.5Γ(1 +
1

0.5
) =

1

n2
100 · Γ(3) =

200

n2
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Exercise 1:

a)

E(X) =

∫ ∞
−∞

xf(x)dx =

∫ ∞
0

x
1

β
e−x/βdx = [−xe−x/β]∞0 −

∫ ∞
0
−e−x/βdx = 0− [βe−y/β]∞0 = β

E(X2) =

∫ ∞
0

x2
1

β
e−x/βdx = [−x2e−x/β]∞0 −

∫ ∞
0

2x(−e−x/β)dx

= 0 + 2β

∫ ∞
0

x
1

β
e−x/βdx = 2β2

⇒ Var(X) = E(X2)− E(X)2 = 2β2 − β2 = β2

Instead of integration by parts integration formulas found on the last page of the formula

sheets could have been used to solve the integrals.

b) With β = 1000 we get

P (X > 1000) =

∫ ∞
1000

1

1000
e−x/1000dx = [−e−x/1000]∞1000 = e−1 = 0.368

Exercise 2:

a) The number of telephone calls per hour is having a Poisson distribution with expectation

µ = λt = 6 · 1 = 6, i.e.

P (X > 6) = 1− P (X ≤ 6)
table

= 1− 0.6063 = 0.3937

b) The time until the first event in a Poisson process is having an exponential distribution

with expectation 1/λ = 1/6. Also note that 10 minutes is 1/6 hour. E.g.

P (T < 1/6) =

∫ 1/6

0
6e−6xdx = [−e−6x]

1/6
0 = −e−1 + 1 = 0.6321

(Alternatively the exercise can be solved by looking at the probability of having at least

one event in a 10 minute interval)

c) The time until the second event in a Poisson process is having a gamma distribution

with parameters α = 2 and β = 1/λ = 1/6. Since 20 minutes is 1/3 hour we then get:

P (S2 < 1/3) =

∫ 1/3

0

1

(1/6)2Γ(2)
x2−1e−x/(1/6)dx =

∫ 1/3

0
36xe−6xdx

= [−6xe−6x]
1/3
0 −

∫ 1/3

0
(−6e−6x)dx

= −2e−2 − [e−6x]
1/3
0 = −2e−2 − e−2 + 1 = 0.5940

Alternatively we can solve the problem by defining Y=the number of telephone calls in

[0,1/3], Y is then having a Poisson distribution with expectation µ = λt = 6 · (1/3) = 2. If

it takes less than 20 minutes until the second telephone call, this means that there will be

at least 2 calls during the 20 first minutes (1/3 hour) and we get:

P (S2 < 1/3) = P (Y ≥ 2) = 1− P (Y ≤ 1)
table

= 1− 0.4060 = 0.5940
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d) The number of telephone calls during 7.5 hours is having a Poisson distribution with

expectation µ = λt = 6 · 7.5 = 45. In principle this can be used to calculate P (X > 50)

exactly, however, in this case it is easier to use the approximation to the normal distribution.

Since µ > 15 the approximation to the normal distribution is good, and we get

P (X > 50) = 1− P (X ≤ 50) = 1− P (
X − 45√

45
≤ 50 + 0.5− 45√

45
)

= 1− P (Z ≤ 0.82) = 1− 0.7939 = 0.2061

e) The number of events in any interval of length t in a Poisson process is having a Poisson

distribution with expectation λt, i.e. the number of telephone calls during 10 minutes =

1/6 hour is having a Poisson distribution with expectation µ = 6 · (1/6) = 1, i.e.

P (X = 0) =
10

0!
e−1 = 0.3679

f) Since the number of events in non-overlapping intervals in a Poisson process are in-

dendent (independent increments) what has happened in the previous 10 minutes has no

influence on what will happen the next 10 minutes - i.e. the probability of no telephone

calls the next 10 minutes is the same as the probability of no calls in any 10 minute interval,

0.3679.

Exercise 3:

a) We first find:

FX(x) =

∫ x

0
0.02ue−0.01u

2
du = [−e−0.01u2 ] = 1− e−0.01x2

Further we have:

FU (u) = P (U < u) = P (min(X1, X2, X3) < u) = 1− P (min(X1, X2, X3) > u)
indep.

= 1− P (X1 > u) · P (X2 > u) · P (X3 > u) = 1− [1− FX(u)]3

= 1− [e−0.01u
2
]3 = 1− e−0.03u2

We could also calculate the probability density: fU (u) = F ′U (u) = 0.06ue−0.03u
2
, u > 0

b)
P (X < 5) = FX(5) = 1− e−0.01·52 = 0.221

P (U < 5) = FU (5) = 1− e−0.03·52 = 0.528

c) If we compare the probability density in a) with the Weibull distribution,

f(x) = αβxβ−1e−αx
β

, x ≥ 0,

we see that X is having a Weibull distribution with α = 0.01 and β = 2, while U is having

a Weibull distribution with α = 0.03 and β = 2. From the expression for the expectation

in the Weibull distribution, E(X) = α−1/βΓ(1 + 1
β ) we then get

E(X) = 0.01−1/2Γ(1 +
1

2
) = 0.01−1/2

1

2
Γ(

1

2
) = 0.01−1/2

1

2

√
π = 8.86

E(U) = 0.03−1/2Γ(1 +
1

2
) = 0.03−1/2

1

2
Γ(

1

2
) = 0.03−1/2

1

2

√
π = 5.12
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